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ABOUT THIS GUIDE: 
 
This TCAA Guide #10 – Introduction to Spherical Astronomy – is the tenth TCAA guide written for amateur astronomers. It was 
started as a book chapter in the early 1990s and didn’t come to fruition until 2020 as part of the COVID-19 pandemic when 
the author had plenty of time on his hands to complete several of his personal bucket list items.  
 
TCAA Guide #10 is an introduction to the basic knowledge of positional astronomy with which amateur astronomer should be 
familiar. While it is not a substitute for learning more extensively about the science of astronomy, this Guide provides the 
basic information one needs to bridge the gap from neophyte to an observer vested with the knowledge of what it takes to 
view the heavens using basic equipment properly. As such, this is not a reference work. It is not intended to be the answer to 
all questions that an amateur astronomer might have. It merely provides sufficient information to advance one in the field of 
amateur astronomy dealing the positions of things in the sky.  
 
Why write Introduction to Spherical Astronomy when there are so many applications available for computers, cell phones, 
and tablets that make calculations for observational astronomy in the blink of an eye? The purpose of this Guide is not to 
make spherical astronomers out of amateur astronomers; rather, it is designed to give amateurs a fuller understanding of the 
workings of electronic planetarium applications and devices like “goto” telescopes. It also can be used to understand the 
methods of archeoastronomy and celestial navigation. If nothing more, this Guide will serve to make for more informed 
consumers of products, research, and position finding. Still, it can also provide a bit of amusement for those who would like 
to make at least some of these calculations on their own. Those would like additional details should turn to such works as 
Jean Meeus’ Astronomical Algorithms (2nd edition, 1999, Willmann-Bell, Inc.) 
 
The author gratefully acknowledges the assistance of Sunil Chebolu who provided the author with guidance about how best 
to develop some of the three dozen line drawings that appear in this edition. The author accepts all responsibility for any 
errors in figure or misrepresentation of fact that might appear in TCAA Guide #10.  
 
ABOUT THE AUTHOR:  
 
Dr. Carl J. Wenning is a well-known Central Illinois astronomy educator. He started viewing the heavens with the aid of his 
grandfather in the summer of 1957. Since that time, he has continued viewing the night sky for nearly six decades. He holds a 
B.S. degree in Astronomy from The Ohio State University, an M.A.T. degree in Planetarium Education from Michigan State 
University, and an Ed.D. degree in Curriculum & Instruction with a specialization in physics teaching from Illinois State 
University. He taught his first courses in astronomy at Alma College in 1977 and Michigan State University in 1978.  
 
Dr. Wenning was planetarium director at Illinois State University from 1978 to 2001. From 1994-2008 he worked as a physics 
teacher educator. Retiring in 2008, he continued to teach physics and physics education courses for an additional twelve 
years. He also taught astronomy and physics lab science almost continuously at Illinois Wesleyan University from 1980 to 
1999. He taught physics at Heartland Community College from 2018-2020. He now has more than 43 years of university-level 
teaching experience. He also taught conceptual physics at University High School during the 1994/1995 academic year.  
 
Carl became associated with the TCAA in September 1978 – shortly after being hired to work at Illinois State University. 
Today he is an Astronomical League Master Observer (having completed 14 observing programs to date) and received the 
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Introduction to Spherical Astronomy 
 
 

1. The Celestial Sphere 
 

When we look up on a dark, clear night, we can see a myriad of stars, all apparently located on the surface of a vast 
hemisphere of indeterminate size. Using only our eyes, we can tell nothing about the distances of the stars. We can establish 
the direction of each star and can, with suitable instruments, determine the angular separations between stars with 
considerable precision.  

An observer located in an open field has the distinct impression that he is located under a hemisphere, as shown in 
Figure 1. The astronomical horizon, an imaginary circle where the mean sea-level surface intersects the sky, compasses the 
observer. The astronomical zenith, 𝑍, is found an angular distance of 90° above this horizon. It is an imaginary point on the 
celestial hemisphere where a line extended opposite the pull of gravity from the observer’s site would intersect the celestial 
hemisphere. 

 
Figure 1. The celestial hemisphere with cardinal points and key locations in the sky indicated. 
 

Cardinal points north (𝑁), east (𝐸), south (𝑆), and west (𝑊) ring the horizon, the intersection of a plane tangent to the 
surface of the Earth at the location of the observer with the sky. The north and south directions are uniquely defined by a line 
drawn tangent to the Earth at the observer’s location, 𝑂, and in the plane containing Earth’s rotation axis. East and west lay 
along a line drawn perpendicular to this north-south tangent line. Using the horizon circle with its directions and the zenith as 
references, it is possible to define the location of any object in the sky uniquely. 

The angular distance of an object above the horizon is known at its elevation; elevation is denoted in this publication 
with the symbol ℎ. An object on the horizon has an elevation of 0°. The zenith has an elevation of 90°. An object located 
halfway up in the sky has an elevation of 45°. An object below the horizon would have an elevation of less than 0°. 
Additionally, elevation is sometimes referred to as altitude. The terms elevation and altitude should not be confused with the 
distance of objects above ground level. Such a distance might be termed height.  

Conversely, the angular distance of an object from the zenith is called zenith distance, 𝑧. An object on the horizon has a 
zenith distance of 90°. Objects below the horizon would have zenith distances of greater than 90°. Zenith distance is equal to 
90°	 − 	ℎ and is always positive. The nadir, the point diametrically opposite the zenith (not shown in Figure 1), has an 
elevation of – 90° and a zenith distance of 180°. 

An object located at a given angular distance above a horizon will is located upon a parallel of elevation, a circle of fixed 
elevation that runs parallel to the horizon. Locating an object upon a given parallel of altitude (known as an almucantar) is 
insufficient to describe its position uniquely. The distance along this circle also must be specified. This angular distance, 
measured from the north through east along the horizon, is called the azimuth (𝐴𝑧). Azimuth is measured from 0° in the 
north to 90° in the east to 180° in the south to 270° in the west and so on. An arc extended downward from the zenith 
through a celestial object intersects the horizon at a 90° angle. This line, a meridian of azimuth, is required to locate an object 
precisely along the horizon circle.  

A particular meridian, the celestial meridian (𝐶𝑀), extends around the celestial sphere from north to south across the sky 
and passes through zenith and nadir. That portion of the celestial meridian, above the horizon, is called the upper meridian; 
that which is below the horizon is called the lower meridian. The celestial meridian divides the observable sky into eastern 
and western halves. 

Lying transverse to the celestial meridian and passing through the zenith and east and west cardinal points is the prime 
vertical (not shown in Figure 1.) The prime vertical serves to separate the sky into northern and southern halves.  

With the passing of the night, stars appear to rise in the eastern half of the sky, reach their highest elevations when they 
cross over or transit the upper meridian going from east to west, and then set in the western half of the sky. The observer is 
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led to conclude by the rising and setting of stars that this hemispherical construct, which appears to hold the stars, extends 
below the horizon. The observer would now seem to find himself at the center of an enormous sphere of indeterminate size 
upon which all celestial bodies may be considered to be located.  

This celestial sphere is an imaginary surface of an arbitrary radius, though presumably great, which contains the observer 
at its center. The celestial sphere seems to carry the stars on their appointed courses across the heavens. Lines connecting 
the observer and stars (which all have different distances) intersect the celestial sphere's surface. Because the distances of 
stars are imperceptible, it shall suffice us to assume that they are located on the surface of this celestial sphere. It is only their 
directions that interest us in the work of spherical astronomy. 

Observations show that not all stars appear to rise and set for an observer at an intermediate northern latitude. Stars to 
the north remain perpetually in the sky, circling round and round a celestial pole (𝑃) in a counterclockwise direction. Their 
motions seem to be nearly centered on the North Star, Polaris by name. Stars that never appear to rise or set, such as the 
stars of the Big and Little Dippers, Cassiopeia, Cepheus, and Draco, are called circumpolar stars. 

Observers in the southern hemisphere would see a similar circumpolar motion above their southern horizon. The 
apparent motions of the stars would be roughly centered on the star Sigma Octantis, however, and their motions would be in 
clockwise rather than in a counterclockwise direction. 

A northern hemisphere observer can identify a point above the northern horizon where stars, even the North Star, 
appear to circle. The north celestial pole (𝑁𝐶𝑃) is the point on the celestial sphere determined by an extension of Earth’s 
northern rotational axis to the point where it reaches the celestial sphere. Similarly, the southern hemisphere observer would 
find the south celestial pole (𝑆𝐶𝑃) above his southern horizon where stars, even Sigma Octantis, would appear to circle.  

Outside the zone of circumpolar stars, an observer would find stars that do appear to rise and set. These stars are known 
as equatorial stars. The stars of Pegasus, Orion, Leo, and Cygnus are among this group for observers in the mid-northern 
latitudes. 

Circumpolar stars transit the celestial meridian twice every time the Earth rotates through 360° – once above the 
celestial pole and once below the celestial pole. When circumpolar stars transit the upper meridian and reach their highest 
altitudes above the horizon, they are said to be at upper culmination. When circumpolar stars transit the upper meridian and 
reach their lowest altitudes, they are said to be at lower culmination. 

Similarly, equatorial stars transit the meridian twice every time the Earth completes one rotation with respect to the 
stars – once at the upper meridian and once at the lower meridian. Such transits are termed upper transit and lower transit, 
respectively. 

The relationship of the north celestial pole to planet earth is shown in Figure 2. The north celestial pole stands directly 
over the north terrestrial pole. Similarly, the south celestial pole stands directly over the south terrestrial pole. An astute 
northern hemisphere observer might also note that there is a region of the celestial sphere whose stars lie below the 
southern horizon and never come into view. Such star patterns for our mid-northern latitude observer would include the 
Southern Cross, Centaurus, the Magellanic Clouds, and so on. Similarly, observers in the mid-southern latitudes would never 
be able to see the Big and Little Dippers or Cassiopeia. 

 
Figure 2. Relationship of terrestrial and celestial coordinate systems. 
 

The terrestrial equator is defined by a plane drawn perpendicular to the Earth’s rotation axis and located midway 
between its poles. An extension of this plane into space intersects with the celestial sphere to produce the celestial equator 
(𝐶𝐸), a circle 90° from both celestial poles, as seen by an Earthbound observer. The celestial equator spans the sky and 
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intersects the horizon at the east and west cardinal points. 
A circle on the celestial sphere that passes through the celestial poles is perpendicular to the celestial equator. Such a 

north-south circle on the celestial sphere is known as an hour circle. Hour circles are analogous to meridians of longitude on 
Earth. The angular distance measured eastward along the celestial equator is called Right Ascension, denoted with the Greek 
letter alpha (𝛼). Unlike longitude, which is measured from the prime meridian, right ascension is measured from a point on 
the celestial equator known as the First Point of Aries. The First Point of Aries represents the intersection of the sun’s hour 
circle with the celestial equator on the date of the March equinox. This hour circle is commonly referred to as the equinoctial 
colure; by analogy, it is the prime meridian of the heavens, though it is never referred to as such. The First Point of Aries is 
represented by the Greek letter gamma (𝛾). The right ascension of the First Point of Aries is, by definition, zero hours. 

Right ascension is measured continuously eastward along the celestial equator from the First Point of Aries to the hour 
circle passing through the celestial object. Traditionally, right ascension is measured in hours, minutes, and seconds, where 
15° of arc equal one hour of right ascension on the celestial equator. The relationship between degrees (°), minutes (‘), and 
seconds (“) of arc and hours (h), minutes (m), and seconds (s) of right ascension as is follows: 
 

24 hours = 360°; 1h = 15°; 1m = 15’; and 1s = 15” 
 

Like the Earth’s coordinate system of latitude, the angular distance of a celestial object north or south of the celestial 
equator measured along the hour circle passing through the object is called declination. It is denoted with the Greek letter 
delta (𝛿). North declinations are taken as positive; south declinations as negative. The celestial equator's declination is 0°; the 
declinations of the north and south celestial poles are taken as +90° and – 90°, respectively. 

The meridian altitude of an observer’s celestial pole depends upon latitude. The relationships between these two and 
the observer’s latitude can be derived from a study of Figure 3. The observer is located at 𝑂 on the Earth (located in the 
center of the celestial sphere and assumed perfectly spherical and miniscule with respect to the size of the celestial sphere) 
which has its center at 𝐶 and an equator which when extended to the celestial sphere forms 𝐸𝑄. Directly above the 
terrestrial pole lies the celestial pole. Line 𝐶𝑃>>>> extends up toward the celestial pole, 𝑃. Because the celestial sphere is of vast 
size compared to the Earth, line 𝑂𝑁>>>> points to the north celestial pole and is parallel to 𝐶𝑃>>>>. Now, 𝐻𝑂𝑁@ = ℎ!". Also, 𝑂𝐶𝑄@ = 𝜙, 
the observer’s latitude, and 𝐻𝑂𝐶@ = 90°. Because ℎ!" + 90° + (90° − 	𝜙) = 180°,  ℎ!" = 	𝜙. 

 
Figure 3. Relationship between the observer’s latitude and the elevation of the celestial pole.  
 

Because the altitude of the celestial pole is equal to the observer’s latitude, an observer at the equator (latitude 0°) 
would see both celestial poles on the horizon; an observer at either pole (latitude 90° north or south) would see the 
corresponding celestial pole at zenith; an observer located midway between the pole and the horizon would see the celestial 
pole halfway up in the sky. 

The meridian altitude of the celestial equator can be found by referring to Figure 4. 𝑁𝑆>>>> marks the horizon centered on 
the observer at 𝑂. 𝑍 marks the zenith, 𝑃 the observer’s celestial pole, and 𝐶𝐸 the celestial equator. Now, the angular 
distance of the poles from the celestial equator is 90°. The elevation of the pole equals the observer’s latitude, 𝜙. 𝑆𝑂𝐶F  is the 
elevation of the celestial equator, 𝜃, at the observer meridian. Because 𝑆𝑂𝐶F + 𝐶𝑂𝑃@+𝑃𝑂𝑁@ = 180°, we can conclude that 
the meridian altitude of the celestial equator equals 90° − 𝜙. Hence, at either of Earth’s poles, the celestial equator runs 
parallel to the horizon; at the equator, it passes through the zenith. 
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Figure 4. The relationship between the observer’s latitude and the elevation of the celestial equator at the meridian. 

 
With these reference points and circles defined and the relationship between the latitude of the observer and the 

altitudes of the celestial poles and equator known, it is possible to describe more completely the positions and motions of 
objects on the celestial sphere with respect to the observer, the observer’s horizon and zenith, or the celestial sphere’s 
equator and poles.  

 
 

2. Introduction to Spherical Astronomy 
 

Spherical astronomy is primarily a study of the directions of celestial objects as seen from any position on the surface of 
the Earth. These directions can be measured conveniently with respect to points on the Earth or in the heavens. The study of 
spherical astronomy is fundamental to any astronomer’s understanding of the motions of the heavens. Spherical astronomy 
is essentially a study of the mathematics of the celestial sphere. 

In this Guide, the reader learns about the fundamental mathematical formulae associated with the study of the celestial 
sphere and see numerous examples of their applications. To assist in such learning, two devices are available for study. The 
celestial sphere has been replicated in the form of celestial globes of various makes and models and one is shown in Figure 
5a. This provides for an external view of the celestial sphere. Seen from the outside, constellations are displayed in reverse. A 
planetarium, as shown in Figure 5b, also is a device that replicates a celestial hemisphere as viewed from within. Inside a 
planetarium, constellations appear as though they would in the night sky.  

 

	
	

 

Figures 5a & 5b. Transparent celestial globe and a conventional planetarium with a hemispheric dome.  
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2a. Initial Results 
 

From the finding ℎ#$ = 𝜙, we know that the altitude of the celestial pole is equal to an observer’s latitude. Given this 
fact, we can draw a celestial sphere as shown in Figure 6. Here we see 𝑃𝑂𝑁@ = 𝑃𝑁I  because 𝑃𝑂𝑁@  is 90° away from 𝑃𝑁I .  

 
Figure 6. Location of various celestial points relative to the observer at 𝑂 as well as the horizon.  
 

Let 𝑁, 𝐸, 𝑆, and 𝑊 mark the cardinal points on the observer’s horizon. 𝑍 marks the zenith, 𝑃 the position of the North 
Celestial Pole, and Σ, the Sigma Point, the intersection of the celestial equator and celestial meridian. The observer is located 
at the center of the celestial sphere at 𝑂. 

Now, 𝑁𝑂𝑃@  is equal to the observer’s latitude, which is designated 𝜙. Because 𝑁𝑂𝑍@  equals 90°, 𝑃𝑂𝑍@ equals 90° − 𝜙. 
Similarly, 𝑍𝑂𝛴@ = 𝜙 and 𝛴𝑂𝑆@= 90° − 𝜙.  

Given that the distance measured perpendicular from the celestial equator is the declination, 𝛿 , the following 
relationships can be derived for points on the celestial meridian:  
 

1. The declination of the zenith is equal to the observer’s latitude, 𝜙. 
2. A star is circumpolar if 𝛿 > 90° − 𝜙 
3. When an equatorial star transits the meridian, the altitude of the star equals 90° + 𝛿 − 𝜙. 
4. A circumpolar star at upper culmination transits the celestial meridian at an altitude of 𝜙 − 𝛿 + 90°.  
5. A circumpolar star at lower culmination transits the celestial meridian with an altitude of 𝜙 + 𝛿 − 90°.  
6. The altitude of the sigma point equals the observer’s co-latitude, 90° − 𝜙. 
7. The declination of the most southerly star theoretically visible from latitude 𝜙 equals 𝜙 − 90°.  
8. The declination of the nadir equals −𝜙. 

 
By inspection, we also can obtain two additional results for points along the horizon. Because the celestial equator is 

everywhere 90° away from the celestial pole: 
 

9. The azimuths where the celestial equator intersects the horizon equals 90° and 270°. 
10. The angle that the celestial equator makes with the horizon equals 90° − 𝜙. 

 
These results are limited to a few points on the celestial meridian and the horizon. If we are to come up with more 

general results – equations that deal with points not solely on the observer’s celestial meridian and horizon – then we must 
begin studying spherical trigonometry in earnest.  But first, something must be said about the non-spherical nature of Earth 
and the consequence of this non-sphericity on positions of objects in the sky.  
 
2b. The Geoid 
 

The construction of a celestial sphere is simple and very useful. In this discussion, the Earth has been assumed to be 
perfectly spherical even though that is not the case. Errors arising from the assumption are minimal for naked-eye astronomy 
and were therefore ignored. More precise calculations using horizon-based coordinates must take the non-spherical form of 
the Earth into account. 
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Earth is a large, self-gravitating body. Such bodies, if sufficiently fluid, form perfect spheres when non-rotating. Because 
the Earth rotates, its shape is not that of a perfect sphere but rather a spheroid of revolution. This spheroid of revolution is 
more appropriately referred to as the standard geoid. It represents an imaginary equilibrium surface defined by the mean 
sea-level surface of the Earth. It is this mean sea-level surface that defines the horizon and astronomical zenith of an 
observer. 

Figure 7 represents a highly exaggerated view of the standard geoid. In reality, the polar radius of the Earth is only 22𝑘𝑚 
less than the equatorial radius of 6,371𝑘𝑚. Consider an observer located at 𝑂 on the surface of the geoid that has its center 
at 𝐶. A line extended upward from the center of the Earth through the observer points to the geocentric zenith indicated by 
𝑍’. The geocentric latitude of the observer is represented by 𝜙’. A line extended upward from our observer and 
perpendicular to a plane tangent to the geoid (the observer’s horizon) intersects a point on the celestial sphere known as the 
astronomical zenith labeled 𝑍. This line extended down to the equatorial radius forms an angle 𝜙, the astronomical latitude. 

 
Figure 7. The Earth geoid greatly exaggerated to show the difference between geocentric and astronomical zeniths.  
 

The difference between angle 𝜙 and 𝜙’ is called the angle of the vertical. It is equal in magnitude to the difference 
between 𝑍 and 𝑍’. The magnitude of difference can be written as a function of astronomical latitude approximately as 
follows: 

 
𝑣 = 𝜙 − 𝜙’ = 695.65”	𝑠𝑖𝑛	2𝜙 − 1.17”	𝑠𝑖𝑛	4𝜙 

 
The non-spherical nature of Earth shifts the geocentric zenith from the astronomical zenith in the direction of the Earth’s 

equator by the amount 𝑣. At the equator and the poles, the astronomical and geocentric zeniths coincide. Their divergence is 
at a maximum at approximately 44.9° north and south latitude. It amounts to about 12” or one-fifth of one degree.  

Generally speaking, calculations made by amateur astronomers need not be of the highest order of precision. If the 
complications introduced by the shape of the Earth are ignored, errors due to the angle of the vertical never amount to more 
than two-tenths of a degree. The distinction between astronomical and geocentric zeniths must be taken into account only if 
a high order of precision is needed. This is quickly done by substituting the geocentric latitude, 𝜙’, of an observing site with its 
astronomical latitude. The astronomical latitude, 𝜙, can be found by the application of the above equation.  

Additionally, several other small but essential corrections such as refraction and parallax must also be applied to 
calculated altitude values precisely. Because a high level of precision is rarely required for amateur work, future distinctions 
between astronomical and geocentric zenith are ignored here, and the Earth is treated as though it is perfectly spherical. 
However, adequate detail is provided in this work so that anyone wishing to produce calculations of higher accuracy can do 
so. 
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2c. Great and Small Circles 
 

Any plane passing through the center of a sphere intersects the sphere producing a great circle. Any other plane 
intersecting the sphere but not passing through the center cuts the sphere in what is known as a small circle. Each circle has 
characteristics that must be examined in detail before discussing the spherical triangle.  

Consider the sphere shown in Figure 8. Let 𝐸𝑄I  be an arc of a great circle centered on 𝐶. Let 𝐴𝐵I  be an arc of a small circle 
centered on 𝐷 and part of the plane parallel to the plane containing points 𝐶, 𝐸, and 𝑄. Now, 𝐴𝐵I = 𝐷𝐴	𝑥	𝐴𝐷𝐵@  when the 
angle is expressed in radian measure. Similarly, 𝐸𝑄I = 𝐶𝐸	𝑥	𝐸𝐶𝑄@. 

 
Figure 8. The relationship between great and small circles.  
  

Because 𝐷𝐴 is parallel to 𝐶𝐸 and 𝐷𝐵 is parallel to 𝐶𝑄, 𝐴𝐷𝐵@  equals 𝐸𝐶𝑄@. Solving each of these equations for their angles 
and equating yields: 

 
𝐴𝐵
𝐷𝐴 =

𝐸𝑄
𝐶𝐸  

or rewriting, 
𝐴𝐵
𝐸𝑄 =

𝐷𝐴
𝐶𝐸  

 
Now, 𝐶𝐸 equals 𝐶𝐴	as both are radii of the sphere. Hence this relationship can be rewritten as 

 
𝐴𝐵
𝐸𝑄 =

𝐷𝐴
𝐶𝐴 

 
Let 𝐸𝐶𝐴@= 𝜃 whence 𝐴𝐶𝐷@ = 90° − 𝜃. Because 𝑠𝑖𝑛	(90° − 𝜃) = 𝑐𝑜𝑠	𝜃 = 𝐷𝐴/𝐶𝐴, we have 𝐴𝐵/𝐸𝑄 = 𝑐𝑜𝑠𝜃. Therefore, 

we arrive at a critical result 
𝐴𝐵 = 𝐸𝑄	𝑐𝑜𝑠	𝜃. 

 
This indicates that a small circle arc converges as the plane containing it departs farther and farther from the center of 

the sphere. Two stars separated by, say, 10° of azimuth appear much farther apart if near the horizon than another pair 
separated by the same number of degrees of azimuth located higher up in the sky. Similarly, two stars separated by a given 
amount in right ascension are closer together if near the celestial poles than near the celestial equator. This complication also 
applies to two places on Earth separated by a given longitude difference. Because meridians converge as they approach the 
poles of a sphere, small circles generally prove to be unsuitable for a detailed study of the celestial and terrestrial spheres.   

The geometry of terrestrial and celestial spheres is greatly simplified by the use of great circles (circles whose planes pass 
through the center of terrestrial or celestial spheres). The angle subtended from the center of a sphere equals the arc length 
on the surface of the sphere. Fortunately, right ascension, declination, the celestial equator, altitude, azimuth, and the 
horizon are, by definition, great circles or segments thereof. Additionally, the lengths of great circle arcs are equal to the 
angles at their poles. This makes great circle arcs especially useful in the study of spherical astronomy.  
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2d. The Spherical Triangle 
 

Let 𝑂 represent the apparent place of an object located “on” the celestial sphere but not on the observer’s celestial 
meridian. Such a situation is shown in Figure 9.  

 
Figure 9. A spherical triangle, 𝑃𝑍𝑂, showing the relationship of object at 𝑂 relative to other celestial angles.  
 

The zenith is located at 𝑍, and the horizon is indicated by the line 𝑆𝑇𝑁. The celestial pole is located at 𝑃; the celestial 
equator is indicated by the line 𝐶𝐸. The altitude of the celestial pole is 𝜙; therefore, the arc 𝑍𝑃 equals 90° − 𝜙. 

A great circle arc is drawn from 𝑍 through 𝑂 intersecting the horizon at 𝑇. The altitude of 𝑂, given by ℎ, is the arc 𝑇𝑂. 
The zenith distance, 𝑧, therefore, equals 90° − ℎ. Similarly, a great circle arc connecting 𝑃 and 𝑂 and extended to the 
celestial equator intersecting it at 𝑄. 𝑄𝑂 is the declination, 𝛿, of the object at 𝑂. The arc 𝑂𝑃 is, therefore, equal to 90° − 𝛿. 

𝑃𝑍𝑂@, measured from the north through east, is the angular distance of the object along the horizon. 𝑃𝑍𝑂@ is, therefore, 
the azimuth, 𝐴𝑧, of the object in question. 𝑍𝑂𝑃@ is frequently referred to as the parallactic angle.  

The remaining angle, 𝑂𝑃𝑍@, is called the hour angle of the object, 𝐻. It represents the angular distance on the celestial 
sphere measured along the celestial equator from the celestial meridian to the hour circle that passes through the celestial 
object in question. Hour angle traditionally is measured in hours or the degree equivalent. It is measured westward from the 
celestial meridian up to but not including 24 hours or 360°. If measured eastward, 𝐻 is considered negative. 

The great circle arcs connecting the zenith, celestial pole, and object, as indicated above, constitute a spherical triangle. 
The astronomer can solve the relationships between the sides and angles of the spherical triangle as handily as the geometer 
does the plane triangle. The spherical triangle solution forms the basis of spherical trigonometry, a study of the relationships 
between the angles and sides of the spherical triangle. 
 
 

3. Fundamental Formulas 
 

There are four fundamental formulas associated with the study of spherical astronomy. Each of the four is especially 
helpful for solving the individual parts of spherical triangles in relation to different angles and sides. The derivation of each 
formula is as follows. 
 
3a. The Cosine Formula 
 

Let 𝑂 be the center of the celestial sphere, as shown in Figure 10. Let 𝒊, 𝒋, and 𝒌 represent unit vectors in the 𝑥, 𝑦, and 𝑧 
directions, respectively. Let 𝑹 be an arbitrary unit vector indicating the direction of an object in space as seen from 𝑂. Let the 
angle between 𝑹 and 𝒌 be called 𝜃. The projection of 𝑹 onto the 𝑥𝑦 plane forms the line ℓ. Let the angle between ℓ and 𝒊 be 
designated 𝜓.  
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Figure 10. Polar coordinates of vector 𝑹 oriented in a random direction. 
 

From our knowledge of plane trigonometry, we can write the rectangular coordinates (𝑥, 𝑦, 𝑧) of the object on the 
celestial sphere in the form of spherical-polar coordinates as follows: 
 

𝑥 = 𝑠𝑖𝑛	𝜃	𝑐𝑜𝑠	𝜓 
 

𝑦 = 𝑠𝑖𝑛	𝜃	𝑠𝑖𝑛	𝜓 
 

𝑧 = 𝑐𝑜𝑠	𝜃 
 

The vector components of 𝑹 can then be written as: 
 

𝑹 = 𝑠𝑖𝑛	𝜃	𝑐𝑜𝑠	𝜓	𝒊, 𝑠𝑖𝑛	𝜃	𝑠𝑖𝑛	𝜓	𝒋, 𝑐𝑜𝑠	𝜃	𝒌 
or 

𝑹 = (𝑠𝑖𝑛	𝜃	𝑐𝑜𝑠	𝜓, 𝑠𝑖𝑛	𝜃	𝑠𝑖𝑛	𝜓	𝑐𝑜𝑠	𝜃) 

 
Figure 11. Forming the dot-product of three vectors results in the cosine formula. 
 

In Figure 11, 𝐶 represents an arbitrary point on the celestial sphere; 𝑹𝐶 represents a unit vector in the direction of 𝐶. 
Similarly, 𝐵 is a point in the 𝑥𝑧 reference plane, and 𝑹𝐵 is the unit vector in the direction of 𝐵. Then,  

 
𝑹𝐵 = (𝑠𝑖𝑛	𝑐, 0, 𝑐𝑜𝑠	𝑐) 

and 
𝑹𝐶 = (𝑠𝑖𝑛	𝑏	𝑐𝑜𝑠	𝐴, 𝑠𝑖𝑛	𝑏	𝑠𝑖𝑛	𝐴, 𝑐𝑜𝑠	𝑏) 
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where 𝑏, 𝑐, and 𝐴 are arcs and angle as indicated in the spherical triangle shown. 

The scalar or dot product of 𝑹𝐵 and 𝑹𝐶 is, by definition, equal to the magnitude of each vector times the cosine of the 
angle between the two vectors. That is,   
 

𝑹𝐵 ∙ 𝑹𝐶 = |𝑹𝐵|	|𝑹𝐶|	𝑐𝑜𝑠	𝑎 = 𝑐𝑜𝑠	𝑎 
 
because |𝑹𝐵| = |𝑹𝐶| = 1. 

The scalar product of two vectors is also the sum of the products of the individual terms of the two vectors. 
 

𝑹𝐵 ∙ 𝑹𝐶 = 𝑠𝑖𝑛	𝑏	𝑐𝑜𝑠	𝐴	𝑠𝑖𝑛	𝑐 + 𝑐𝑜𝑠	𝑏	𝑐𝑜𝑠	𝑐 
 

Equating the results of the two dot products and rearranging terms leads to the first and most fundamental formula of 
spherical astronomy: 
 

𝑐𝑜𝑠	𝑎 = 𝑐𝑜𝑠	𝑏	𝑐𝑜𝑠	𝑐 + 𝑠𝑖𝑛	𝑏	𝑠𝑖𝑛	𝑐	𝑐𝑜𝑠	𝐴 
 

This formula is known as the cosine formula. It is very useful when two sides and an included angle are known, and the 
third side is desired or when three sides are known, and an included angle is desired. 

This formula can be generalized through the permutation of terms because of the symmetry of the spherical triangle. 
That is, 

𝑐𝑜𝑠	𝑏 = 𝑐𝑜𝑠	𝑐	𝑐𝑜𝑠	𝑎 + 𝑠𝑖𝑛	𝑐	𝑠𝑖𝑛	𝑎	𝑐𝑜𝑠	𝐵 
 

𝑐𝑜𝑠	𝑐 = 𝑐𝑜𝑠	𝑎	𝑐𝑜𝑠	𝑏 + 𝑠𝑖𝑛	𝑎	𝑠𝑖𝑛	𝑏	𝑐𝑜𝑠	𝐶 
 

The principle of duality for spherical triangles permits the replacement of each side by the supplement of the opposite 
angle (𝑒. 𝑔. , 𝑎 is replaced by 180° − 𝐴) and each angle by the supplement of the opposite side (i.e., 180° -a replaces a). 
Hence, the cosine formula can be rewritten as: 
 

−𝑐𝑜𝑠	𝐴 = 𝑐𝑜𝑠	𝐵	𝑐𝑜𝑠	𝐶 − 𝑠𝑖𝑛	𝐵	𝑠𝑖𝑛	𝐶	𝑐𝑜𝑠	𝑎 
 

This equation is sometimes called the polar version of the cosine formula and, like the cosine formula, has similar 
permutations: 

−𝑐𝑜𝑠	𝐵 = 𝑐𝑜𝑠	𝐶	𝑐𝑜𝑠	𝐴 − 𝑠𝑖𝑛	𝐶	𝑠𝑖𝑛	𝐴	𝑐𝑜𝑠	𝑏 
 

−𝑐𝑜𝑠	𝐶 = 𝑐𝑜𝑠	𝐴	𝑐𝑜𝑠	𝐵 − 𝑠𝑖𝑛	𝐴	𝑠𝑖𝑛	𝐵	𝑐𝑜𝑠	𝑐 
 

These equations are very helpful when two angles and an included side are known, and the third angle is desired or 
when three angles are known, and a side is desired. 
 
3b. The Sine Formula 
 

Additional results can be derived from an analysis of the vector or cross product of vectors 𝑹𝐵 and 𝑹𝐶. From the 
definition of the cross product, we can write: 
 

𝑹𝐶 × 𝑹𝐵 = 𝑠𝑖𝑛	𝑎	𝑹𝐷 
 
where 𝑹𝐷 is a vector perpendicular to the plane containing both 𝑹𝐵	and 𝑹𝐶. 𝑹𝐷 points to 𝐷 on the celestial sphere, as 
shown in Figure 12.  
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Figure 12. Forming the cross-product of three vectors results in the sine formula. 
 

From the study of vectors, we know that 𝑹𝐶 × 𝑹𝐵 can be written in determinant form as: 
 

𝑹𝐶 × 𝑹𝐵 = l
𝒊 𝒋 𝒌

sin 𝑏 cos𝐴 sin 𝑏 sin𝐴 cos 𝑏
sin 𝑐 0 cos 𝑐

l 

which yields: 
 

𝑹𝐶 × 𝑹𝐵 = (𝑠𝑖𝑛	𝑏	𝑠𝑖𝑛	𝐴	𝑐𝑜𝑠	𝑐)𝒊 + (𝑐𝑜𝑠	𝑏	𝑠𝑖𝑛	𝑐 − 𝑠𝑖𝑛	𝑏	𝑐𝑜𝑠	𝐴	𝑐𝑜𝑠	𝑐)𝒋 + (−𝑠𝑖𝑛	𝑏	𝑠𝑖𝑛	𝐴	𝑠𝑖𝑛	𝑐)𝒌 
 

From an examination of Figure 10, we can see that the components of 𝑹𝐷 can be written as follows: 
 

𝑹𝐷 = (𝑠𝑖𝑛	𝐴𝐷	𝑐𝑜𝑠	𝐵𝐴𝐷@	𝒊 + 𝑠𝑖𝑛	𝐴𝐷	𝑠𝑖𝑛	𝐵𝐴𝐷@	𝒋 + 𝑐𝑜𝑠	𝐴𝐷	𝒌)	 
 

The components of 𝑹𝐶 × 𝑹𝐵 should equal the corresponding components of 𝑹𝐷 when multiplied by the term 𝑠𝑖𝑛	𝑎. In 
the case of the 𝒌 components, we have the following: 
 

−𝑠𝑖𝑛	𝑏	𝑠𝑖𝑛	𝐴	𝑠𝑖𝑛	𝑐 = 𝑠𝑖𝑛	𝑎	𝑐𝑜𝑠	𝐴𝐷 
 

Consider the spherical triangle 𝐴𝐶𝐷 in Figure 10. Because 𝑹𝐷 is perpendicular to 𝑹𝐶 × 𝑹𝐵, 𝐶𝐷 equals 90°. Therefore 
𝐴𝐶𝐷@ = 90° + 𝐵. Applying the cosine formula to triangle 𝐴𝐶𝐷 yields: 
 

𝑐𝑜𝑠	𝐴𝐷 = 𝑐𝑜𝑠	𝑐	𝑐𝑜𝑠	90° + 𝑠𝑖𝑛	𝑐	𝑠𝑖𝑛	90°	𝑐𝑜𝑠	(90° + 𝐵) 
Therefore 

𝑐𝑜𝑠	𝐴𝐷 = −𝑠𝑖𝑛	𝑐	𝑠𝑖𝑛	𝐵. 
 
Substituting this result into the terms of the 𝒌 components yields: 
 

−𝑠𝑖𝑛	𝑏	𝑠𝑖𝑛	𝐴	𝑠𝑖𝑛	𝑐 = 𝑠𝑖𝑛	𝑎	(−𝑠𝑖𝑛	𝑐	𝑠𝑖𝑛	𝐵) 
or, after simplification, 

sin𝐴
sin 𝑎 =

sin𝐵
sin 𝑏  

 
Symmetry allows for a more complete description of the results.  
 

sin𝐴
sin 𝑎 =

sin𝐵
sin 𝑏 =

sin𝐶
sin 𝑐  
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This relationship is commonly known as the sine formula. It is a fundamental equation of spherical astronomy. It is useful 
for finding opposing sides and angles. It must be used with caution because the relationship suffers from an inherent defect 
of ambiguity whenever an angle or an arc is greater than 90°.  
 
3c. The Analogue Formula 
 

Applying the new-found sine formula to the spherical triangle 𝐴𝐵𝐷 of Figure 11 yields: 
 

sin𝐴𝐵𝐷@
sin𝐴𝐷 =

sin𝐵𝐴𝐷@
sin𝐵𝐷  

or 
𝑠𝑖𝑛	𝐴𝐷	𝑠𝑖𝑛	𝐵𝐴𝐷@ = 𝑠𝑖𝑛	𝐵𝐷	𝑠𝑖𝑛	𝐴𝐵𝐷F = 𝑠𝑖𝑛	90°	𝑠𝑖𝑛	(90° + 𝐵) = 𝑐𝑜𝑠	𝐵 

 
Substitution of this result into the terms of the 𝒋	component of 𝑹𝐷 multiplied by 𝑠𝑖𝑛	𝑎 and equating terms of the 

components yields: 
 

𝑠𝑖𝑛	𝑎	𝑐𝑜𝑠	𝐵 = 𝑐𝑜𝑠	𝑐	𝑠𝑖𝑛	𝑏 − 𝑠𝑖𝑛	𝑐	𝑐𝑜𝑠	𝑏	𝑐𝑜𝑠	𝐴 
 

This result is known as the analog formula. There are six variations of this formula, considering the permutation of terms 
and the dual nature of all spherical astronomy formulas. 
 
3d. The Four-Parts Formula 
 

Further consideration of the 𝒊	component of 𝑹𝐶 × 𝑹𝐵 vector leads to a restatement of the sine formula. One final 
approach is taken to derive the fourth and final fundamental formula of spherical astronomy. Write the cosine formula as:  
 

𝑐𝑜𝑠	𝑏 = 𝑐𝑜𝑠	𝑎	𝑐𝑜𝑠	𝑐 + 𝑠𝑖𝑛	𝑎	𝑠𝑖𝑛	𝑐	𝑐𝑜𝑠	𝐵 
 
Now, using the cosine formula, we can rewrite 𝑐𝑜𝑠	𝑐 as: 
 

𝑐𝑜𝑠	𝑐 = 𝑐𝑜𝑠	𝑎	𝑐𝑜𝑠	𝑏 + 𝑠𝑖𝑛	𝑎	𝑠𝑖𝑛	𝑏	𝑐𝑜𝑠	𝐶 
 
and with the aid of the sine formula, we can rewrite 𝑠𝑖𝑛	𝑐 as: 
 

𝑠𝑖𝑛 𝑐 =
𝑠𝑖𝑛 𝐶 𝑠𝑖𝑛 𝐵
𝑠𝑖𝑛 𝑏  

 
Making these substitutions and using the well-known trigonometric identity 𝑐𝑜𝑠%𝑎 = 1 − 𝑠𝑖𝑛%𝑎, the following equation 
results after simplification: 

𝑐𝑜𝑠	𝑎	𝑐𝑜𝑠	𝐶 = 𝑠𝑖𝑛	𝑎	𝑐𝑜𝑡	𝑏 − 𝑠𝑖𝑛	𝐶	𝑐𝑜𝑡	𝐵 
 

This formula is known as the four-parts formula. Six variations of this formula are possible considering the permutation 
of terms and the duality of spherical formulas. Because the sequence of terms does not lend itself to ready memorization, the 
equation can be rewritten as follows: 
 

𝑐𝑜𝑠	(𝑖𝑛𝑛𝑒𝑟	𝑠𝑖𝑑𝑒)	𝑐𝑜𝑠	(𝑖𝑛𝑛𝑒𝑟	𝑎𝑛𝑔𝑙𝑒) = 𝑠𝑖𝑛	(𝑖𝑛𝑛𝑒𝑟	𝑠𝑖𝑑𝑒)	𝑐𝑜𝑡	(𝑜𝑡ℎ𝑒𝑟	𝑠𝑖𝑑𝑒) − 𝑠𝑖𝑛	(𝑖𝑛𝑛𝑒𝑟	𝑎𝑛𝑔𝑙𝑒)	𝑐𝑜𝑡	(𝑜𝑡ℎ𝑒𝑟	𝑎𝑛𝑔𝑙𝑒)	 
 

The four-parts formula is particularly well suited to relating four consecutive parts of a spherical triangle, two sides, and 
two angles.  

These four fundamental formulas and their variations can be used to solve almost any conceivable problem dealing with 
the positions of objects on the celestial sphere. Just how these formulas can be used to advantage is shown in the following 
section. 
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4. Numerical Examples 
 

The utility of these formulas, as applied to either the celestial or terrestrial sphere, can be shown through examples. 
What follows are several examples that show the utilization of the standard formulas. 
 
EXAMPLE 1:  
 

A jet airliner departs Chicago for London. What is the air distance of the great circle route? What is the azimuth of 
departure? What is the greatest northerly latitude reached? 

Consider the spherical triangle stretching between Chicago (𝐶), London (𝐿), and the geographic North Pole (𝑃), as shown 
in Figure 13. Arc 𝐶𝐿 is the air distance, 𝑑; 𝐶𝑃 and 𝐿𝑃 are the co-latitudes, and 𝐶𝑃𝐿F  is the difference in longitude, ∆𝜆. 

 
Figure 13. Spherical triangles related to the air route flown by a jet airliner going from Chicago to London. 
 

The longitude (angular distance east or west of the Earth’s reference meridian or prime meridian) and latitude (angular 
distance north or south of the equator) of each city are given as follows: 
 

 Chicago London 
 

Longitude 𝜆& = −87°	45’ 
 

𝜆% = +00°	10’ 

Latitude 𝜙& = +41°	50’ 𝜙% = +51°	30’ 
 

Note the negative sign on 𝜆&. By modern convention, measurements of longitude east of the prime meridian are 
considered positive. Measurements made to the west are therefore considered negative. Hence, the difference in longitude, 
∆𝜆, equals 𝜆% − 𝜆& or 87°	55’. North latitudes are considered positive, whereas south latitudes are considered negative. 

Applying the cosine formula to spherical triangle 𝐶𝑃𝐿 results in the formulation: 
 

𝑐𝑜𝑠	𝑑 = 𝑐𝑜𝑠	(90° − 𝜙&) 	cos 	(90° − 𝜙%) + sin 	(90° − 𝜙&) 	sin 	(90° − 𝜙%) 	cos ∆𝜆 
 
that reduces to: 

𝑐𝑜𝑠	𝑑 = 𝑠𝑖𝑛	𝜙&	𝑠𝑖𝑛	𝜙% + 𝑐𝑜𝑠	𝜙&	𝑐𝑜𝑠	𝜙%	𝑐𝑜𝑠	∆𝜆 
 
because 𝑠𝑖𝑛	(90° − 𝜃) = 𝑐𝑜𝑠	𝜃 and 𝑐𝑜𝑠	(90° − 𝜃) = 𝑠𝑖𝑛	𝜃. 

Inserting the values and solving the equation for 𝑑 results in an air distance of 57.4° of arc. Because one minute of arc on 
the surface of the Earth equals approximately 1.853𝑘𝑚 (360° at the equator corresponding to the circumference of the 
Earth at the equator, 40,030𝑘𝑚), the total air distance is 6,380𝑘𝑚. 

The azimuth of departure from Chicago, 𝐴𝑧, is given by 𝑃𝐶𝐿F . Once again applying the cosine formula to the triangle 
yields: 

𝑐𝑜𝑠	(90° − 𝜙%) = 𝑐𝑜𝑠	(90° − 𝜙&)	𝑐𝑜𝑠	𝑑 + 𝑠𝑖𝑛	(90° − 𝜙&)	𝑠𝑖𝑛	𝑑	𝑐𝑜𝑠	𝐴𝑧 
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𝑐𝑜𝑠 𝐴𝑧 =
𝑠𝑖𝑛𝜙% − 𝑠𝑖𝑛𝜙& 	𝑐𝑜𝑠 𝑑

𝑐𝑜𝑠 𝜙& 	𝑠𝑖𝑛 𝑑
 

 
Solving for 𝐴𝑧 and inserting all variables results in an angle of departure equal to 47.6°, or roughly northeast. 

The greatest northerly latitude reached occurs when the airliner flies along a parallel of latitude and perpendicular to a 
meridian of longitude. This occurs at point 𝐺 along the great circle route. Construct the line 𝑃𝐺 perpendicular to 𝐶𝐿. The 
length of 𝑃𝐺 is 90° − 𝜙'	where 𝜙'	is the greatest northerly latitude reached. The sine formula can be used to advantage to 
solve for 𝜙'.  

𝑠𝑖𝑛 90°
𝑠𝑖𝑛 	(90° − 𝜙&)

=
𝑠𝑖𝑛 𝐴𝑧

𝑠𝑖𝑛	z90° − 𝜙'{
 

 
𝑐𝑜𝑠 𝜙' = 𝑠𝑖𝑛 𝐴𝑧 	𝑐𝑜𝑠 𝜙& 

 
Inserting the values and solving for 𝜙' yields 56.6° north latitude, a value of latitude higher than London’s. Under such 

circumstances, the airliner approaches London from the north of west. The precise angle can be readily calculated using the 
cosine formula. 
 
EXAMPLE 2: 
 

Given the sun’s right ascension, 𝛼, determine its declination, 𝛿, using knowledge of the fact that the sun moves along the 
ecliptic, which intersects the celestial equator at a known angle, 𝜀, the obliquity of the ecliptic, as shown in Figure 14.  
 
	
	
	
	
	
	
	

 
 

Figure 14. Relationship between the ecliptic and celestial equator. 
 

Let 𝑃 represent the celestial pole and 𝐾 the ecliptic pole. Let 𝑆 represent the position of the sun on the ecliptic. The 
celestial equator and the ecliptic intersect at the point 𝛾, the position of the March equinox. The angle between the two, 𝜀, 
has a magnitude of about 23.44°. 

Now 𝑆𝐶 is the sun’s declination, 𝛿. 𝛾𝐶 is the sun’s right ascension, 𝛼. 𝑆𝐶	is perpendicular to 𝛾𝐶. Applying the four-parts 
formula to spherical triangle 𝑆𝐶𝛾 gives: 
 

𝑐𝑜𝑠	𝛼	𝑐𝑜𝑠	90° = 𝑠𝑖𝑛	𝛼	𝑐𝑜𝑡	𝛿 − 𝑠𝑖𝑛	90°	𝑐𝑜𝑡	𝜀 
 

𝑠𝑖𝑛	𝛼	𝑐𝑜𝑡	𝛿 = 𝑐𝑜𝑡	𝜀 
 

𝑡𝑎𝑛	𝛿 = 𝑠𝑖𝑛	𝛼	𝑡𝑎𝑛	𝜀 
 

Hence, knowledge of the sun’s right ascension is sufficient to determine its declination. This result proves useful in 
examples to come. 
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EXAMPLE 3: 
 

What is the hour angle, 𝐻, of an object rising due east? That is, with an azimuth, 𝐴𝑧, of 90°? Consider the solution of 
these problems with the use of Figure 15. 

 
Figure 15. The hour angle, 𝐻, for an object rising due east with an azimuth of 90° from latitude 𝜙. 
 
 A similar application of the four-parts formula to Figure 14 yields: 
 

𝑐𝑜𝑠	(90° − 𝜙)	𝑐𝑜𝑠	𝐴𝑧 = 𝑠𝑖𝑛	(90° − 𝜙)	𝑐𝑜𝑡	90° − 𝑠𝑖𝑛	𝐴𝑧	𝑐𝑜𝑡	𝐻 
or 
 
with a valuable result: 

𝐻 = 90° 
 
EXAMPLE 4: 
 

One can readily determine the approximate length of day (𝐿𝑜𝐷) from a knowledge of the hour angle of rising. The 𝐿𝑜𝐷 is 
approximate 2/15 this value; the 2 coming from the 𝐿𝑜𝐷 being twice the length of time for the sun to move from the horizon 
to the meridian and the 1/15, which is required to convert the hour angle of rising into hours of time. Consider Figure 16. 

 
Figure 16. The sun’s position at rising, including zenith distance (90°) and hour angle.  
 

Calculate the hour angle of rising (in degrees) using the cosine formula with the spherical triangle shown in Figure 15 
 

𝑐𝑜𝑠 𝑧 = 𝑐𝑜𝑠(90° − 𝜙) 𝑐𝑜𝑠(90° − 𝛿) + 𝑠𝑖𝑛(90° − 𝜙) 𝑠𝑖𝑛(90° − 𝛿) 𝑐𝑜𝑠 𝐻 
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Now, if 𝑧 is taken to be 90° (a rough approximation of the sun’s zenith distance at rising), the relationship simplifies to 
 

0 = 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 𝛿 + 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠𝐻 
or 

𝑐𝑜𝑠 𝐻 = −𝑡𝑎𝑛𝜙 𝑡𝑎𝑛 𝛿 
 

𝐿𝑜𝐷 = 2/15	𝐻 = 2/15	𝑐𝑜𝑠(&	(−𝑡𝑎𝑛	 𝜙	𝑡𝑎𝑛	 𝛿) 
 

Sunrise occurs when the sun’s center is located a distance below the horizon equal to its semidiameter (16’) plus a 
correction for refraction of about 34’. Ergo, sunrise occurs when the sun’s zenith distance 𝑧 = 90°	51’ = 90.85°. Thus, a 
better value for the length of the day (though still not precise due to the sun's motion along the ecliptic) can be found by 
using the following formula. The proof of the following equation is left to the reader. 

 

𝐿𝑜𝐷 =
2
15 𝑐𝑜𝑠

(&((𝑐𝑜𝑠 90.85° − 𝑠𝑖𝑛	 𝜙	𝑠𝑖𝑛	 𝛿)/(𝑐𝑜𝑠	 𝜙	𝑐𝑜𝑠	 𝛿)) 
 

The sun’s hour angle at rising or setting is given by the following relationship. Keep in mind that 𝐻 < 0 in the event of 
rising and 𝐻 > 0 in the event of setting.  

 

𝐻 =
1
15 𝑐𝑜𝑠

(&((𝑐𝑜𝑠 90.85° − 𝑠𝑖𝑛	 𝜙	𝑠𝑖𝑛	 𝛿)/(𝑐𝑜𝑠	 𝜙	𝑐𝑜𝑠	 𝛿)) 
 
EXAMPLE 5: 
 

We want to calculate the altitude, ℎ, and azimuth, 𝐴𝑧, of a star located in the western sky at some particular point in 
time. The pertinent application of spherical trigonometry to the celestial sphere is shown in Figure 17.  

 
Figure 17. Sun’s hour angle and auxiliary angle for a given position in the western sky. 
 

Let 𝑆 represent the position of a star on the surface of the celestial sphere. 𝑍 marks the zenith; 𝑃 the position of the 
north celestial pole. Because the altitude of the pole is equal to the observer’s latitude, 𝑃𝑍 is the co-latitude, 90° − 𝜙. 𝑃𝑆 is 
equal to 90° minus the declination of the star or 90° − 𝛿. The zenith distance, 𝑍𝑆, equals 90° minus the altitude or 90° − ℎ. 
𝑍𝑃𝑆F  is the hour angle of the star, 𝐻. 𝑃𝑍𝑆F  is called 𝐴), the auxiliary angle which is measured from the north through the west. 
We must be careful to distinguish 𝐴) from 𝐴𝑧, which is measured from the north through east. 

If the star lies in the western sky, a correction to the auxiliary angle must be made to arrive at the proper value of 
azimuth. The relationship of the auxiliary angle to the azimuth is as follows: If 0h ≤ 𝐻 ≤ 12h, then 𝐴𝑧 = 𝐴). If 12h < 𝐻 <
24h, then 𝐴𝑧 = 360° − 𝐴). Perhaps a more useful way to state this for programmable computers is in the sine function test. 
If 𝑠𝑖𝑛	𝐻 ≤ 0, then 𝐴𝑧 = 𝐴); if 𝑠𝑖𝑛	𝐻 > 0, then 𝐴𝑧 = 360° − 𝐴).  

Consider first the altitude of the given star. Applying the cosine formula to spherical triangle 𝑃𝑆𝑍 yields: 
 

𝑐𝑜𝑠	(90° − ℎ) = 𝑐𝑜𝑠	(90° − 𝜙)	𝑐𝑜𝑠	(90° − 𝛿) + 𝑠𝑖𝑛	(90° − 𝜙)	𝑠𝑖𝑛	(90° − 𝛿)	𝑐𝑜𝑠	𝐻 
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𝑠𝑖𝑛	ℎ = 𝑠𝑖𝑛	𝜙	𝑠𝑖𝑛	𝛿 + 𝑐𝑜𝑠	𝜙	𝑐𝑜𝑠	𝛿	𝑐𝑜𝑠	𝐻 
 

We also can replace 𝐻 with the difference between local sidereal time (𝑙𝑠𝑡), which is to be described shortly, and the 
right ascension of the object in question, 𝛼, where 𝐻 = 𝑙𝑠𝑡 − 𝛼. 
 

ℎ = 𝑠𝑖𝑛	𝜙	𝑠𝑖𝑛	𝛿 + 𝑐𝑜𝑠	𝜙	𝑐𝑜𝑠	𝛿	𝑐𝑜𝑠	(𝑙𝑠𝑡 − 𝛼) 
Similarly, 
 

𝑐𝑜𝑠	(90° − 𝛿) = 𝑐𝑜𝑠	(90° − 𝜙)	𝑐𝑜𝑠	(90° − ℎ) + 𝑠𝑖𝑛	(90° − 𝜙)	𝑠𝑖𝑛	(90° − ℎ)	𝑐𝑜𝑠	𝐴𝑜 
 

𝑠𝑖𝑛	𝛿 = 𝑠𝑖𝑛	𝜙	𝑠𝑖𝑛	ℎ + 𝑐𝑜𝑠	𝜙	𝑐𝑜𝑠	ℎ	𝑐𝑜𝑠	𝐴𝑜 
 

𝑐𝑜𝑠 𝐴) =
𝑠𝑖𝑛 𝑑 − 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 ℎ

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 ℎ  

 
recalling the requirements for deriving azimuth (𝐴𝑧) from the auxiliary angle (𝐴)).  

With the apparent motion of the celestial sphere, the altitude of a celestial object is time dependent. Time dependence 
enters into the equation for ℎ through the term 𝐻, which equals 𝑙𝑠𝑡 − 𝛼. In the case of azimuth, the time dependence comes 
through the variable ℎ.  

It is interesting to note that the above formulas can be used to direct an altazimuth-mounted “goto” telescope. A 
command can be used to calculate the elevation and azimuth of a new celestial object once a telescope is aligned with the 
stars. The servo motors are then driven from its current location through angles equal to changes in azimuth (∆𝐴𝑧) and 
elevation (∆ℎ).  

We now examine how local sidereal time and the observer’s location are integrated into the hour angle term. 
 
 

5. Sidereal Time and Hour Angle 
 

Figure 18 shows the celestial sphere as seen from a perspective above Earth's north celestial pole, 𝑁. Let 𝑁𝑀 constitute 
that part of an observer’s celestial meridian from the celestial pole down to the celestial equator. Let 𝑁𝛾 be the equinoctial 
colure, an hour circle with a right ascension of 0h by definition. Let 𝑁𝑆 be the hour circle that contains a celestial object of 
right ascension 𝛼.  

 
Figure 18. The relationship between 𝛼, 𝑙𝑠𝑡, and 𝐿𝐻𝐴.  
 

The Local Hour Angle (𝑀𝑁𝛾@ ) of the First Point of Aries, 𝛾, constitutes local sidereal time that is denoted 𝑙st. 𝛾𝑀𝑆@ 
constitutes the right ascension of the celestial object on 𝑁𝑆. 𝛾𝑁𝑆F  is therefore 24ℎ − 𝑎. 𝑀𝛾𝑆@ is the local hour angle, 𝐿𝐻𝐴, of 
the object on 𝑁𝑆. Because 𝑀𝛾𝑆@ equals 𝑀𝛾 plus 𝛾𝑆, the relationship between hour angle, sidereal time, and right ascension is 
as follows: 

 
𝐿𝐻𝐴 = 𝑙𝑠𝑡 + 24ℎ − 𝛼 which is the same as 𝐿𝐻𝐴 = 𝑙𝑠𝑡 − 𝛼 due to the fact that 24ℎ is the same as 0ℎ. 
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The local hour angle of a celestial object and local sidereal time differ from those observed from the prime meridian as a 
function of both time and observer’s longitude. It is possible to redefine local sidereal time as right ascension of an object on 
an observer’s celestial meridian where the hour angle is zero. That is, the right ascension of a point on an observer’s celestial 
meridian is equal to that observer’s local sidereal time. The relationship between local hour angle, local sidereal time, and the 
observer’s longitude is fundamental to our understanding of the celestial sphere's astronomy. 

Sidereal time constitutes a measure of the rotation of the Earth with respect to the celestial sphere. Its basis is the 
sidereal day, a period required for two successive transits of the First Point of Aries. Like right ascension, sidereal time is 
measured in hours, minutes, and seconds. 

The relationship between the hour angle for an observer on the prime meridian, the Greenwich Hour Angle, 𝐺𝐻𝐴, and 
the hour angle for the local observer, Local Hour Angle, 𝐿𝐻𝐴, of an observer at some non-zero longitude, 𝜆, can be obtained 
from in inspection of Figure 19. This figure represents a north polar view of planet Earth. 
 

Figure 19. Relationship of the selected angles to selected elements of time.  
 

Let 𝑁𝐺 represent the prime meridian and 𝐺𝑆 the direction of an object on the celestial sphere. The extension of 𝑁𝐺 
points to the Greenwich celestial meridian 𝑀. 𝑀𝐺𝑆@  is the Greenwich hour angle of the object in question. Construct line 𝑁𝑆’ 
parallel to 𝐺𝑆. Because 𝑀𝐺𝑆@  is a corresponding angle to 𝐺𝑁𝑆’, angle 𝐺𝑁𝑆’ is equal to the GHA of the object at 𝑆. 

Let 𝑂 represent the position of an observer, not on the prime meridian whose longitude is 𝜆. Line 𝑁𝑂 extended to the 
celestial sphere points to the celestial meridian of 𝑂. Construct the line 𝑂𝑆” parallel to 𝐺𝑆 and 𝑁𝑆’ and extend 𝑁𝑂 to 𝑀’, the 
celestial meridian of the observer. 𝑀’𝑂𝑆”@  is the local hour angle of the object in question. Because 𝑂𝑆” is parallel to 𝑁𝑆’, 
𝑂𝑁𝑆’@  is the corresponding angle of 𝑀’𝑂𝑆”@ . Hence, 𝑂𝑁𝑆’@  equals the local hour angle of object 𝑆 as seen from 𝑂.  

Now, 𝐺𝑁𝑂@  represents the longitude of the observer at 𝑂. Hence, 
 

𝐿𝐻𝐴 = 𝐺𝐻𝐴 + 𝜆 
 
For this relationship to hold as written, modern longitude sign conventions must be observed. That is, longitude west is taken 
as negative, whereas longitude east is taken as positive. 

Because the hour angle of an object increases with time, its relationship with ordinary clock time must be addressed. 
Also, because the Earth completes one rotation with respect to the stars (a sidereal day – the basis of star time) in less than 
24 hours (a mean solar day – the basis for civil time), the relationships between ordinary clock time and “star time” must be 
addressed.  
 
5a. Civil Time 
 

Civil time, the ordinary day-to-day time kept with the clocks, watches, cell phones, tablets, and so forth, is a relatively 
simple concept. It’s origin, however, is complex. Civil time is based upon the average diurnal motion of the Earth and the 
resulting apparent motion of the sun across the sky. 

Since time immemorial, humans have kept track of the passage of the daylight hours based upon the sun's motion. The 
sun rises along the eastern horizon in the morning, is due south at midday, and sets along the western horizon in the evening. 
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Time once was regulated by reference to this companion through the use of the sundial. People who regulated their lives by 
the daily motion of the actual sun were making use of apparent solar time. 

With the advent of uniformly moving clocks, humans began to realize that the sun was an inconstant companion. Its 
speed across the sky and among the stars was not uniform. The time of midday varied by more than 30 minutes throughout a 
year. 

The sun’s irregular motion across the sky is caused by two factors: 1) irregular eastward motion with respect to the 
background stars, and 2) irregular motion of observers located on the surface of the Earth. The larger and more important 
variation of apparent solar time is due to the first factor. 

Irregularity in the sun’s eastward motion among the stars has a seasonal variation due to the obliquity of the ecliptic and 
the eccentricity or non-circular shape of the Earth’s orbit.  

As the Earth nears the sun, the rate of its orbital motion increases. This causes a corresponding change in the rate of the 
sun’s motion along the ecliptic. As the Earth pulls away from the sun, the Earth’s orbital motion slows, and the sun’s rate of 
motion along the ecliptic decreases.  

 Because the ecliptic is inclined to the celestial equator by about 23.44°, the component of the sun’s eastward motion 
among the stars increases and decreases. When the sun is near a solstice position on the ecliptic, most if not all of its motion 
is directed toward the east. When the sun nears an equinox position, the sun has a significant component of motion directed 
either north or south. 

The time at any one spot based upon the average motion of the sun is called mean solar time or, more commonly, local 
mean time. Local mean time is based on the 24-hour mean solar day. This is the average time required for the fictitious 
mean sun to cross the observer’s meridian twice. The fictitious mean sun is an imaginary body that moves at a uniform rate 
eastward along the celestial equator.  

The difference between apparent solar time and mean solar time can amount to as much as 16 minutes at certain times 
of the year. This difference between these two times, apparent solar time minus mean solar time, is known as the equation 
of time. 

With the advent of rapid communications and travel during the mid 19th century, it became evident that the only way to 
regulate travel and clocks was by setting up time zones. At the instigation of the American railroads, time would no longer be 
regulated by the sun’s apparent position; neither would each town keep its own time based on the sun's motion. Instead, 
timekeeping would be based upon time zones, regions roughly 15° of longitude wide, adapted to political boundaries. 
Hypothetically speaking, the basis for each time zone is a central meridian, one of 24 meridians of longitude that were 
integer multiples of 15°. Ideally, each time zone would stretch 7.5° of longitude east and west of the central meridian, and 
everyone within that time zone would observe the same time. Today civil time and time zones are regulated by the 
Department of Commerce in the United States.  

North America would have four such time zones (Eastern, Central, Mountain, and Pacific) and four standard meridians 
(75°, 90°, 105°, and 120° west longitude respectively). The inhabitants of each zone would keep standard time, the mean 
solar time kept by a clock located on the central meridian of the time zone. Time would vary by one hour from one time zone 
to the next. Moving westward from one time zone into the next, an observer would simply set his clock back one hour and 
vice versa. 

There are “problems” associated with the artificial construct of time zones. Persons on the eastern side of the time zone 
might have sunrise at 5:30 AM, whereas persons living on the western side of the time zone might have sunrise at 6:30 AM. 
This has caused some fragmentation of certain time zone boundaries. Also, a source of boundary problems is large 
population centers. Gary, Indiana, for instance, wants to be in the same time zone as Chicago, its larger neighbor. As a result, 
the tip of northwest Indiana is not in the same time zone as the rest of Indiana. Additionally, the remainder of Indiana has 
chosen to remain always on standard time (like the states of Arizona and Hawaii), whereas some states are now planning to 
move permanently to daylight saving time such as Illinois. 

If events such as rising and setting are calculated for the standard meridian of the time zone, then a longitude time 
correction, 𝑙𝑡𝑐, must be applied to observers at the various locations within the time zone at the same latitude. For every 
degree farther east in longitude, one was in the time zone, events in the heavens occur four minutes earlier that at the 
standard meridian. For every degree west, celestial events occur 4 minutes later than at the standard meridian. The 
correction is negative if the observer is east of the time zone’s standard meridian and positive if west. 

Local mean time can be related to standard mean time in the following way: 
 

local mean time = standard mean time + longitude time correction 
 

With advances in communication and the attendant apparent shrinkage of the global village, the 24 time zones around 
the globe also have limitations. Universal Time (UT) was initially established in the late 1800s to serve as an international 
reference for the determination of longitude using celestial navigation. Today UT is regularly used by astronomers and others 
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(e.g., airline, ship, and train companies) with a need to avoid confusion between time zones. Universal Time is essentially the 
hour angle of the fictitious mean sun observed at the prime meridian plus 12 hours. It is expressed in the 24-hour system 
whereby 1:00 PM is 13:00 and so on.  

Universal Time is a measure of time that conforms very closely to the daily motion of the fictitious mean sun. Universal 
Time is formally defined by an equation that relates the average rotation rate of the Earth and the daily motion of the 
fictitious mean sun. It is determined from observations of the stars. Universal Time so defined is termed UT0. UT0 increases 
at a non-uniform rate due to variations in the rotation rate of the Earth. 

If small corrections are applied for the shifts in longitude of the observing site due to polar motion, the irregularly 
varying motion of the terrestrial poles with respect to the Earth’s crust, then UT0 becomes UT1.  

UT1 is still somewhat variable due to seasonal changes in the rotation rate of the Earth. These variations have been 
empirically determined and can be applied as corrections to UT1 to produce a much more uniformly flowing system of time 
measure known as UT2. 

UT2 is nearly uniform time. High precision atomic clocks keep time that is still more uniform, however. Atomic clocks 
measure the passage of time about a million times more accurately than can be determined through astronomical 
observations. Because of these differences yet another time convention was established, which is called Coordinated 
Universal Time or simply UTC. UTC serves as the basis of all civil timekeeping.  

Because Earth’s overall rotation rate is decreasing due to tidal effects of the sun and moon, atmospheric loading, plate 
motions, and a variety of other physical phenomena, the day is not precisely 86,400 seconds in duration, but slightly longer. 
Because of the increasing length of the day, a step adjustment, essentially a leap second, is introduced into UTC whenever 
the difference UT1 - UTC exceeds 0.7 seconds. On the average, a leap second is added or subtracted every 1 to 3 years and 
usually at the end of either June 30 or December 31. 

International Atomic Time, TAI, is pure atomic time that is the basis of UTC. TAI is never adjusted and differs from UTC 
only as a consequence of the addition of leap seconds. The difference TAI - UTC had increased to 37 seconds as of January 1 
2017, when another leap second was added. 

Yet another measure of time, Terrestrial (Dynamical) Time (TDT = deprecated abbreviation or TT = preferred 
abbreviation), increases at the same rate as TAI, but TT runs ahead of TAI by precisely 32.184𝑠 for historical reasons. TT is the 
time normally used to define motions of bodies within the solar system. As of the start of 2020, TDT-UTC = ∆T = 38.568𝑠	 +
	32.184𝑠	= 70.752𝑠. 

The relationship between Coordinated Universal Time (UTC) and standard time for each of the American time zones is as 
follows: 

Eastern Standard Time + 5h = UTC 
Central Standard Time + 6h = UTC 
Mountain Standard Time + 7h = UTC 
Pacific Standard Time + 8h = UTC 
Alaska Standard Time + 9h = UTC 
Hawaii Standard Time + 10h = UTC 

 
If daylight saving time is in effect, then the number of hours added according to the above list is decreased by 1h (e.g., CDT + 
5h = UTC). 

Coordinated Universal Time can be obtained from short wave signals broadcast by station WWV of Fort Collins, Colorado. 
Continuous time signals can be heard by tuning receivers to 2.5, 5, 10, 15, or 20 megahertz or via CHU in Canada by tuning to 
3.330, 7.335, or 14.670 megahertz. Signal strength and clarity are dependent upon atmospheric conditions and time of day.  

During certain times of the year, clocks are set forward one hour to establish daylight saving time (DST) under the 
regulation of the U.S. Department of Commerce and subject to states’ rights. (Arizona, Hawaii, and parts of Indiana do not 
observe Daylight Saving Time; other states appear to be moving toward permanent Daylight-Saving Time.) The effect of DST 
is to “add” one additional hour to the evening hours by “taking” it from the morning hours.  

If, following these time zone corrections, you arrive at a time greater than 24 hours, subtract 24 hours and add one day 
to the date. For instance, the Coordinated Universal Time corresponding to 8:00 PM Central Daylight Time on June 8 is 25 
hours UTC June 8 or 1H UTC June 9. 

The relationship between local mean time, UTC, and the observer’s longitude, 𝜆, is as follows: 
 

local mean time = UTC + 𝜆 
 
keeping in mind that west longitudes are considered negative and expressed in time equivalence based upon the conversion 
factor of one hour per 15°. 
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5b. Sidereal Time 
 

Earth completes 360° of rotation with respect to the stars every sidereal day. However, the length of the sidereal day 
varies because the rate at which the Earth rotates is not constant. Variations in the Earth’s spin rate are due to lunar and 
solar tidal effects, core-mantle interactions, and seasonal meteorological changes. Also, shifts in the position of the Earth’s 
crust with respect to the Earth’s axis of rotation induce small changes in the apparent length of the sidereal day. 

Because these changes and their magnitudes are generally unpredictable, astronomers have chosen to deal with mean 
sidereal time. Mean sidereal time is the hour angle of the mean equinox of date, necessarily the current position of the First 
Point of Aries, the location of which is affected by the phenomenon of precession. Precession is the continual reorientation 
of the Earth’s axis in space as a result of Earth-Moon-Sun gravitational interactions. Mean sidereal time is set to increase at a 
rate that tends to average out the phenomena that cause variations in the length of the actual sidereal day. 

On average, a star returns to the same place in the sky roughly every	23 hours, 56 minutes, and 4.1 seconds. This time 
constitutes the mean sidereal day. Because of the sun’s ecliptic motion and precession, the period required to bring the sun 
back to the same place in the sky is longer than the time for the Earth to complete one rotation with respect to the stars. 

As the Earth orbits the sun in about 365.242 days (a seasonal or tropical year), the sun moves 360° along the ecliptic. 
Daily, the sun appears to move an average of 0.9856° per day (360°/365.242𝑑) eastward along the ecliptic. As a result, the 
Earth has to turn through this extra distance to bring the sun back to the same point in the sky. This requires approximately 3 
minutes, 55.9	seconds, which yields the 24-hour time period we call the mean solar day. Because 24 hours of mean sidereal 
time pass in 23ℎ, 56m, and	4.1s of civil time, sidereal time increase at a rate that is currently 1.0027283 times faster than 
that of civil time. 

The local mean sidereal time (𝐿𝑀𝑆𝑇) differs from Greenwich mean sidereal time (𝐺𝑀𝑆𝑇) at a given instant of time as a 
function only of longitude, 𝜆, in the following fashion:  
 

LMST = GMST + 𝜆 
 
where 𝜆 is expressed in time-equivalent units and taken as negative if west and positive if east. 

Using this relationship, the local hour angle of a celestial object can be readily calculated, given its right ascension and 
local mean sidereal time. Local mean sidereal time can be readily calculated for any instant in civil time.  
 
5c. Calculating Local Mean Sidereal Time 
 

As noted above, 𝐿𝑀𝑆𝑇 can be found simply from a knowledge of 𝐺𝑀𝑆𝑇 and the time equivalence of 𝜆. Coming up with 
𝐺𝑀𝑆𝑇, however, is complicated. 𝐺𝑀𝑆𝑇 at a particular time on a particular date slowly changes because of irregularities in 
the civil calendar, precession, and nutation. Table 1 lists the 𝐺𝑀𝑆𝑇 for 0h UTC on January 1 for several years. From this table, 
it should be clear that the determination of 𝐺𝑀𝑆𝑇 is not a trivial undertaking.  
 

Year  𝑮𝑴𝑺𝑻 (0h UTC)   Year  𝑮𝑴𝑺𝑻 (0h UTC) 
 
2021  6h 43m 28s   2026  6h 42m 39s 
2022  6h 42m 30s   2027  6h 41m 42s 
2023  6h 41m 33s   2028  6h 40m 45s 
2024  6h 40m 36s   2029  6h 43m 44s 
2025  6h 43m 36s   2030  6h 42m 47s 

 
Table 1. Greenwich Mean Sidereal Times for 0h UTC for January 1 for several year, 2021-2030.  
 

The process of determining the value of 𝐺𝑀𝑆𝑇 is complex and beyond the scope of this work. However, an example is 
provided to show how to calculate 𝐿𝑀𝑆𝑇 for completeness. Consider the following example. 

 
An observer located at longitude 88.97408° west (time equivalent equals 5ℎ	55𝑚	54𝑠) wishes to find local mean 

sidereal time at 9:00 PM CDT on May 17, 1992. The observer is located in the Central Time Zone that is observing Daylight 
Saving Time.  
 
Convert the observer’s AM/PM time to the 24-hour system by adding 12 hours due to it being PM: 
 

9 PM CDT (5/17) + 12h = 21h CDT (5/17) 
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To convert this 24-hour system value of CST to UTC, add 5 hours because DST is in effect (add 6 hours if DST is not being 
observed). 

21h CST (5/17) + 5h = 26h UTC (5/17) 
 
Now, 26h UTC on May 17 is the same thing as 2h UTC on the 18th. That is, 
 

26h UTC (5/17) = 2h UTC (5/18) 
 
Using a United States Naval Observatory Astronomical Almanac or similar, the observer determines that the GMST for 0h UTC 
is: 

𝐺𝑀𝑆𝑇 (0h UTC) = 15h 43m 43s 
 
Two hours of civil time later, sidereal time will have increased by 1.0027378 x 2h or 2h 0m 20s. Hence, 
 

𝐺𝑀𝑆𝑇 (2h UTC) = 15h 43m 43s + 2h 0m 20s = 17h 44m 3s 
 
Because LMST = GMST + 𝜆, we have after converting the observer’s west longitude to time equivalent (recall that –88.97408° 
= –5h 55m 54s): 

𝐿𝑀𝑆𝑇	= 17h 44m 3s – 5h 55m 54s = 11h 48m 09s 
 

Now that we have a handle on how to find local mean sidereal time, we can put this information and our knowledge of 
spherical astronomy to good use. In the following section, the reader learns how to calculate a simple nomogram, a pictorial 
representation of the heavens. earns 
 
 

6. Further Applications of Spherical Astronomy 
 

What follows are several examples of the application of spherical astronomy to practical problems. These examples deal 
with the angle of inclination of the ecliptic to the horizon as a function of sidereal time, archaeoastronomy alignments, rising 
and setting azimuths, and the preparation of two nomograms or astronomical charts. 
 
EXAMPLE 6: Angle Between Ecliptic and Horizon 
 

It has been said that for a given elongation of a planet, the planet may appear either high up in the sky or low down 
depending on the angle that the ecliptic makes with the horizon. For instance, it is a well-known fact that Mercury can be 
viewed best during autumn evenings and spring mornings. This is so because the angle that the ecliptic makes relative to the 
horizon is greatest under these circumstances. What angle does the ecliptic make with the horizon as a function of local 
sidereal time? The answer can be derived from a study of Figure 20. 

 
Figure 20. Inclination of the ecliptic relative to the horizon as a function of hour angle.  
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In this figure, 𝐶𝐶’ represents the celestial equator that intersects the horizon at 𝐸. From our initial results in section 2a 
above, we know that the angle at 𝐸 equals 90° − 𝜙. Its supplementary angle, 𝐸’ equals 90° + 	𝜙. If 𝛾 represents the First 
Point of Aries, the distance 𝛾𝐸 equals the right ascension of an object at its rising. Because the ecliptic intersects the celestial 
equator at angle 𝜀, we can now solve for 𝐼, the inclination of the ecliptic relative to the horizon. Applying the polar version of 
the cosine formula  

−𝑐𝑜𝑠 𝐴 = 𝑐𝑜𝑠 𝐵 𝑐𝑜𝑠 𝐶 − 𝑠𝑖𝑛 𝐵 𝑠𝑖𝑛 𝐶 𝑐𝑜𝑠 𝑎 
we get: 

𝑐𝑜𝑠	𝐼 = −𝑐𝑜𝑠	(90° + 𝜙)	𝑐𝑜𝑠	𝜀 + 𝑠𝑖𝑛	(90° + 𝜙)	𝑠𝑖𝑛	𝜀	𝑐𝑜𝑠	𝛼 
 
And because 𝑐𝑜𝑠	(90° + 𝜙) = −𝑠𝑖𝑛𝜙 and 𝑠𝑖𝑛	(90° + 𝜙) = 𝑐𝑜𝑠	𝜙 
 

𝑐𝑜𝑠	𝐼 = 𝑠𝑖𝑛 𝜙 	𝑐𝑜𝑠	𝜀 + 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛	𝜀	𝑐𝑜𝑠	𝛼 
 

Because by definition 𝐻 = 𝑙𝑠𝑡 − 𝜆 and the hour angle of an object rising due east has been shown via Example 3 above 
to be 90°, 𝛼 can be rewritten as 𝑙𝑠𝑡 − 90° or 
 

𝑐𝑜𝑠	𝐼 = 𝑠𝑖𝑛 𝜙 	𝑐𝑜𝑠	𝜀 + 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛	𝜀	𝑠𝑖𝑛	𝑙𝑠𝑡 
 

Hence, when 𝑙𝑠𝑡 equals 90° (6ℎ) or 270° (18ℎ), the value of 𝑠𝑖𝑛	𝑙𝑠𝑡 is +1 and −1, respectively, and 𝐼 is at extreme 
values. For 40° north latitude and 𝜀 = 23.44°, 𝐼 reaches a maximum value of 73.4° and a minimum value of 26.6°. The 
maximum values of 𝐼 occur at the times of autumn equinox sunrise and spring equinox sunset (the best times to view 
Mercury). The minimum values of 𝐼 occur at the times of the spring equinox sunrise and autumn equinox sunsets (the worst 
times to view Mercury). The above relationship reduces to two straightforward maximum and minimum formulas for 𝐼 when 
the First Point of Aries is on the horizon, either east or west: 
 

𝐼*+, = 90° − 𝜙 + 𝜀 
 

𝐼*-. = 90° − 𝜙 − 𝜀 
 

Because inferior planets near greatest eastern elongation are viewed following sunset, the absolute best times to 
observe them would be during late winter sunsets when the sun would be below the horizon at 6ℎ sidereal time. This occurs 
in the days just before the spring equinox. Similarly, the absolute best time to view inferior planets at greatest western 
elongation would be when the sun would be just below the horizon at 18ℎ sidereal time, just after the autumn equinox. At 
these times, the planet would have its greatest altitude above the horizon for a given elongation with the sun still below the 
horizon.   
 
EXAMPLE 7: Archaeoastronomy Alignments 
 

An archaeological site with suspected astronomical alignments is found at 32° north latitude. An analysis of several 
possible lines of sight yields one that aligns with the horizon giving a setting azimuth of 297° (𝐴) = 63°) at an elevation of 2°. 
To what celestial event – if any – does this alignment correspond? The situation with respect to the celestial sphere is shown 
in Figure 21.  
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Figure 21. Finding the declination of the setting sun given a particular setting azimuth.  
 

From an analysis of the spherical triangle in Figure 20 containing the zenith, celestial pole, and point on the horizon, we 
arrive at the following statements using the law of cosines:  

 
cos	(90° − ℎ) = cos 	(90° − 𝜙) cos	(90° − 𝛿) + 𝑠𝑖𝑛 (90° − 𝜙) sin 	(90° − 𝛿) cos𝐴) 

 
𝑠𝑖𝑛	𝛿 = 𝑠𝑖𝑛	𝜙	𝑠𝑖𝑛	ℎ + 𝑐𝑜𝑠	𝜙	𝑐𝑜𝑠	ℎ	𝑐𝑜𝑠	𝐴) 

 
Inserting the values for 𝜙, ℎ, and 𝐴) yields a value for declination equal to +23.8°, a nice match for the sun's declination 

on the summer solstice (+23.44°). Hence, this well could be a summer solstice marker. 
This analysis does not take into account the refraction due to the Earth’s atmosphere. That should not be a reason for 

concern, however, because many astronomical alignments are rough at best.  
Because the obliquity of the ecliptic changes very little over hundreds of years, searching for solar and even lunar 

alignments are easily accomplished. If one wants to establish stellar alignments, then the effects due to precession of Earth’s 
axis must be taken into account.  
 
EXAMPLE 8: Rising and Setting Azimuths 
 

The rising and setting azimuths may be obtained from the expression found in Example 7. Solving the equation for 𝐴) 
yields: 

cos𝐴) =
𝑠𝑖𝑛 𝛿 − 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 ℎ

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 ℎ  

 
If the altitude ℎ is replaced by 90° − 𝑧, the relationship becomes: 
 

𝑐𝑜𝑠 𝐴) =
𝑠𝑖𝑛 𝛿 − sin𝜙 𝑐𝑜𝑠 𝑧

𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝑧  

 
Because the inverse-cosine function returns values only in the range of 0° to 180°, how then does one arrive at setting 

azimuths that would range between 180° and 360°? Setting azimuths will are equal to 360° minus the rising azimuth 
(assuming the same declination, latitude, and a level horizon with ℎ = 0°)	and can be readily found via the following 
expression: 

𝐴𝑧/011-.' = 360° − 𝐴𝑧2-/-.' 
 

If one is carefully calculating rising and setting azimuths of sun, moon, stars, or planets, then the effects due to refraction 
by the atmosphere must be taken into account. Additionally, if one is calculating such azimuths for the sun and moon, 
apparent semidiameters and refraction also must be taken into account. The moon’s position must also be corrected for 
parallax. The methods for managing these considerations are covered in later sections of this article. 
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EXAMPLE 9: Astronomical Nomogram #1 
 

An observer is located at 88.974° west longitude, 40.502° north latitude. He wants to prepare a diagram for his local 
newspaper that shows the relative positions of Uranus, Neptune, the constellation Sagittarius, and the horizon at 11:30 PM 
on July 20, 1992. To do so, the observer is required to calculate the altitudes and azimuths of each celestial object. From prior 
findings we have in the order of use the following equations: 

 
𝐻 = 𝑙𝑠𝑡 − 𝛼 

 
𝑠𝑖𝑛 ℎ = 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 𝛿 + 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝐻 

 

𝑐𝑜𝑠 𝐴) =
𝑠𝑖𝑛 𝛿 − 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 ℎ

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 ℎ  

 
Our amateur astronomer begins the calculations by determining the local mean sidereal time for 11:30 PM and arrives at 

18ℎ	30𝑚	53𝑠 or, for purposes of calculation, 277.721°. Using a table of right ascensions (epoch 1992.6, converted to 
decimal degrees) and declinations for each star, Uranus, and Neptune, the observer, calculates the data shown in Table 2. 
(Corrections for refraction not applied.) 
 

Object 𝜶(°) 𝜹(°) 𝑯(°) 𝒉(°) 𝑨𝒛(°) 
𝛾 SGR 271.338	 −30.425	 +6.384	 18.875	 185.814 
𝛿 SGR 275.125	 −29.817	 +2.596	 19.672	 182.383 
𝜀	SGR 275.925	 −34.383	 +1.796	 15.151	 181.536 
𝜆 SGR 276.875	 −25.433	 +0.846	 24.104	 180.830 
𝜙 SGR 281.300	 −27.000	 −3.579	 22.458	 176.548 
𝜎 SGR 283.700	 −26.300	 −5.979	 23.000	 174.174 
𝜁 SGR 285.525	 −29.530	 −7.804	 19.283	 172.825 
𝜏 SGR 286.625	 −27.683	 −8.904	 21.359	 171.541 
Uranus 286.850	 −22.967	 −9.129	 25.993	 170.630 
Neptune 288.600	 −21.583	 −10.879	 27.124	 168.632 

 
Table 2. Hand-calculator-based elevations and azimuths of stars and planets for making Figure 22a. 
 

Our amateur astronomer has been very careful to determine which side of the meridian the objects appear by applying 
the sine function test before finding azimuth from the auxiliary angle. Plotting the tabulated values of ℎ and 𝐴𝑧 on a 
rectangular grid yields results shown in Figure 22a. 
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Figures 22a and 22b. Nomogram shows Uranus, Neptune, and the stars of Sagittarius at 11:30 PM on July 20, 1992, from 
Central Illinois. Figure 22a created using MS Excel. Figure 22b from SkySafari 6 Plus.  
 

Of course, modern computer programs and apps for cell phones and tablets can perform these calculations and produce 
beautiful renderings in a flash. Figure 22b shows one such chart produced with SkySafari 6 Plus (version 6.5.0, Simulation 
Curriculum Corp., copyright 2014-2018) on a desktop computer. Again, the idea behind this TCAA Guide is not to have you do 
such calculations by hand, but to understand how they are done. If you are a programmer, then you can prepare the 
programs necessary to make such calculations. 
 
EXAMPLE 10. Solar Right Ascension and Declination based on ecliptic longitude 
 

Another useful result from spherical astronomy can be derived from Figure 23. This figure shows the sun at a point along 
the ecliptic. Its position there is shown in relationship to the celestial equator and the First Point of Aries (𝛾). The distance of 
the sun from 𝛾 measured along the ecliptic is known as ecliptic longitude represented with the symbol 𝜆. The distance north 
or south of the celestial equator is declination (𝛿) and eastward from the First Point of Aries measured along the celestial 
equator right ascension (𝛼). 

 
Figure 23. Solar right ascension and declination based on ecliptic longitude. 
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Recall the four-parts formula: 
 

𝑐𝑜𝑠	(𝑖𝑛𝑛𝑒𝑟	𝑠𝑖𝑑𝑒)	𝑐𝑜𝑠	(𝑖𝑛𝑛𝑒𝑟	𝑎𝑛𝑔𝑙𝑒) = 𝑠𝑖𝑛	(𝑖𝑛𝑛𝑒𝑟	𝑠𝑖𝑑𝑒)	𝑐𝑜𝑡	(𝑜𝑡ℎ𝑒𝑟	𝑠𝑖𝑑𝑒) − 𝑠𝑖𝑛	(𝑖𝑛𝑛𝑒𝑟	𝑎𝑛𝑔𝑙𝑒)	𝑐𝑜𝑡	(𝑜𝑡ℎ𝑒𝑟	𝑎𝑛𝑔𝑙𝑒)	 
 

From Figure 22, we derive the following relationship using the four-parts formula: 
 

𝑐𝑜𝑠	𝛼	𝑐𝑜𝑠	90° = 𝑠𝑖𝑛	𝛼 	cot 𝛿 − 𝑠𝑖𝑛	90°	𝑐𝑜𝑡	𝜀	 
which reduces to  

𝑠𝑖𝑛	𝛼 	cot 𝛿 = 𝑐𝑜𝑡	𝜀 
or 

tan 𝛿 = 𝑠𝑖𝑛	𝛼 	𝑡𝑎𝑛 𝜀 
 

Given this relationship, the declination of the sun can be found for any right ascension with only knowledge of the value 
of the obliquity of the ecliptic,	𝜀, which is roughly equal to 23.44°. For instance, when the right ascension of the sun is 6ℎ 
(90°),	then 𝛿 = 𝜀. When 𝛼 = 18ℎ	(270°), then 𝛿 = −𝜀 and so forth.  
 
EXAMPLE 11: Astronomical Nomogram #2 
 

A more sophisticated nomogram can be prepared that exhibits the location of a celestial object as a function of the sun’s 
zenith distance. This is especially useful when preparing charts showing planets in the evening or morning twilight sky. Charts 
for the evening can be prepared for the end of civil twilight (sun’s zenith distance, 𝑧, equals 96°), mid twilight (𝑧 = 99°), the 
end of nautical twilight (𝑧 = 102°), the end of astronomical twilight (𝑧 = 108°), or at any point in between. 

The standard formulas for the calculations of altitude and azimuth are given in Example 9. The dependence on local 
sidereal time can be eliminated through appropriate substitutions. Let 𝐻⨀ and 𝐻" be the hour angles of the sun and planet, 
respectively. Let 𝛼⨀ and 𝛼" be the right ascensions of the sun and planet, respectively. Note first that we have the hour 
angles of the sun and planet respectively:  

𝐻⨀ = 𝑙𝑠𝑡– 𝛼⨀ 
and  

𝐻" = 𝑙𝑠𝑡 − 𝛼" 
 

where 𝑙𝑠𝑡 is the local sidereal time at chart time. Solving each of the above equations for 𝑙𝑠𝑡, equating, and solving for 𝐻" 
yields: 

𝐻" = 𝐻⨀ + 𝛼⨀ − 𝛼" 
 

Given a solar zenith distance of, say, 99° (the sun’s center is 9° below the horizon – mid twilight), the sun’s hour angle is 
readily determined from the equation 𝐻⨀ = 𝑙𝑠𝑡 − 𝛼⨀. With the values of 𝛼⨀ and	𝛼" known, it is easy to find 𝐻". With the 
right ascension of the sun known, the declination of the sun, 𝛿⊙, can readily be found using the equation of Example 10. It is 
then easy to calculate the altitude and azimuth of the planet using the formulas of Example 9. Figure 24 shows one instance 
of such a calculation. Here, the position of Venus is shown in the western evening sky at 30-day intervals at the end of civil 
twilight (sun’s center 6° below the horizon).  
 

 
 

Figure 24. The position of Venus in the eastern predawn sky with the sun 9° below the horizon at 30-day intervals, June 15, 
2020, through January 11, 2021. 
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Such nomograms, as shown in Figure 24, can be generated with the use of computer programs and apps for 
smartphones and tablets. Unfortunately, none of them at this time directly produced such charts. Charts for various dates 
must be generated separately, and the images stacked, as shown in Figure 25. 

 

 
 

Figure 25. Venus at 30-day intervals at the start of civil twilight. This image is a stack of 8 individual images produced using 
SkySafari 6 Pro and Photoshop. Note also the appearance of Mercury and the moon.  
EXAMPLE 12: Times of Sunrise and Sunset 
 

It would seem that calculating the times of sunrise and sunset would be a rather straight forward task. Surprisingly, this is 
not the case. The calculations are attended by a considerable number of complicating factors. Among them are the following: 

 
• Uncertainty of the sun’s position. Calculations of the times of sunrise and sunset depend upon a knowledge of the sun’s 

position at those times and, consequently, the associated hour angles. Unfortunately, we can’t know the sun’s position 
with precision until we know the times of sunrise and sunset. The best we can do is to estimate the time of these 
phenomena and then determine a new value for the sun’s right ascension and declination and then recalculate the hour 
angles. This becomes an iterative process, successively reducing error in the sun’s position along with hour angles.  

• Irregular ecliptic motion of sun. Making the situation more complicated is the fact that the sun's right ascension is 
affected by its eastward motion along the ecliptic, which is itself irregular. The sun's rate of motion along the ecliptic is at 
a maximum when Earth is nearest the sun and, at a minimum when Earth is farthest from the sun. The difference 
between right ascension of the mean sun and its actual right ascension is exacerbated by the fact that the ecliptic is 
inclined to the celestial equator (along which right ascension is measured) by the obliquity of the ecliptic, about 23.44°.  

• Sun’s change in right ascension. The sun’s change in right ascension during the morning hours delays its time of meridian 
transit; similarly, the sun's motion during the afternoon hours delays its setting time. These delays typically range from 1 
to 2 minutes each depending on the time of year and the observer’s latitude.  

• Time of sun’s meridian transit. Variations in the sun’s motion along the ecliptic can be reduced to a single formula, the 
so-called equation of time, 𝐸. Here 𝐸 is the difference between the right ascension of the apparent (actual) sun (RAS) 
that moves along the ecliptic at variable speed and the right ascension of the fictitious mean sun (RAMS) that moves 
along the celestial equator at a steady pace. The equation of time takes on values ranging from −14𝑚	15𝑠 to 
+16𝑚	25𝑠,	as shown in Table 3.  
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Table 3. Values of 𝐸, the equation of time, for various points throughout the year. 𝐸 = 𝑅𝐴𝑆	– 	𝑅𝐴𝑀𝑆. (Epoch 2000) 
 

The equation for 𝐸 deals with aspects of celestial mechanics that are not appropriate to this short treatise. Ergo, this 
topic is not addressed here. Those seeking details and formulae will are referred to Jean Meeus’ Astronomical Algorithms (2nd 
edition, 1999, Willmann-Bell, Inc.) 
 
• Atmospheric refraction. The variance of atmospheric temperature, temperature gradients associated with frontal 

systems, relative humidity, and pressure all induce changes in atmospheric refraction. Atmospheric refraction at the 
horizon is about 35.4′ for a temperature of 10°𝐶 and an atmospheric pressure of 1013.25ℎ𝑃𝑎 in the visible part of the 
spectrum. A value of 35’ is adopted here for calculations.   

• Sun’s apparent diameter. The sun’s apparent diameter as seen from Earth varies, ranging from 31′	27″ at the time of 
aphelion to 32′	32″ at the time of perihelion. An average value of 32’ is therefore adopted for the sake of convenience. 
The semidiameter value of 16’ is used in calculations, defining sunrise and sunset as those points in time when the sun’s 
upper limb is on the horizon.   

• Irregular horizon. The observer’s horizon does not typically everywhere have a zenith distance of 90°. Most horizons are 
undulating, with the zenith distance varying due to undulations in the landscape. The horizon is not uniform except at 
sea, and even its zenith distance can be affected by the observer's height above the water's surface. 

• Observer height. The height of the observer above the surface of Earth can produce a “dip” of the horizon resulting in 
earlier sunrises and later sunsets.  

• Longitude time correction. Because civil time within a time zone is standardized, everyone within a time zone observes 
the time kept on the time zone’s central meridian. Corrections dealing with the times of sunrise and sunset must be 
made to account for any longitude difference. Recall that Earth turns through 15°/1hr. Ergo, if a person is 1° east of the 
standard meridian of a time zone, events occur there 4 minutes earlier (60m/15° = 4m/1°) than they do if on the time 
zone’s central meridian. Similarly, if a person is 1° west of the central meridian of a time zone, events occur there 4 
minutes later than if they are on the central meridian. This difference in times is known as the longitude correction and is 
denoted here by ∆𝜆. 

• Daylight Saving Time. When Daylight Saving Time (DST) is in effect, 1ℎ is added to the standard time in a time zone.  
 
All of these factors influence the times of sunrise and sunset. As a result, calculations of the times of sunrise and sunset 

can be several minutes off from the actual events. When combined, these factors can easily cause differences between actual 
and predicted times of up to ±2 minutes, even for a constant horizon elevation of 0°. Therefore, using approximations for 
the times of sunrise and sunset generally suffices.  

Now, the sun’s hour angle at rising and setting can be used to determine the times of sunrise and sunset. From Example 
4, we have the following relationship for the hour angle of solar risings and settings that includes consideration of 
atmospheric refraction and the sun's semidiameter:  

 

𝐻 =
1
15 𝑐𝑜𝑠

(&((𝑐𝑜𝑠 90.85° − 𝑠𝑖𝑛	 𝜙	𝑠𝑖𝑛	 𝛿)/(𝑐𝑜𝑠	 𝜙	𝑐𝑜𝑠	 𝛿)) 
 

Recall that the hour angle of rising is taken as negative and the hour angle of setting if taken as positive.  
Using the sun’s mean declination for the day (𝛿 at the time of meridian transit), the hour angles or rising and setting can 

be found. The first approximations for the times of sunrise and sunsets are, therefore, as follows (keeping mind that 𝐻2-/0 <
0).  

𝑇2-/0 = 𝑇12+./-1 +𝐻2-/0  

 
𝑇/01 = 𝑇12+./-1 +𝐻/01  

Aspect Value Date 
minimum −14𝑚	15𝑠 February 11 

zero 0𝑚	0𝑠 April 15 
maximum +3𝑚	41𝑠 May 14 

zero 0𝑚	0𝑠 June 13 
minimum −6𝑚	30𝑠 July 26 

zero 0𝑚	0𝑠 September 1 
maximum +16𝑚	25𝑠 November 3 

zero 0𝑚	0𝑠 December 25 
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Now, if the sun’s center crossed the meridian at 12:00 PM each day, calculating the times of sunrise and sunset would be 
simply a matter of adding 𝐻2-/0 to 12 to get the time of sunrise or adding 𝐻/01 to 12 to get the time of sunset. Unfortunately, 
it does not work well for a variety of reasons, as noted at the start of this section. For instance, we need to make corrections 
for the equation of time, longitude correction for the observer’s position within the time zone, as well as Daylight Saving Time 
(if appropriate).  

This article is not designed to make the reader an expert calculator of such phenomena but, instead, to help the reader 
understand how calculations such as the times of sunrise and sunset are made. A general example should suffice. Those 
seeking more technical information should turn to publications such as Jean Meeus’ Astronomical Algorithms (2nd edition, 
1999, Willmann-Bell, Inc.) 

A fair approximation for the standard time of the sun’s meridian transit for an observer not on the central meridian of his 
or her time zone can be written as follows: 

𝑇12+./-1 = 12ℎ	 +	∆𝜆 − 𝐸 
 
Again, if Daylight Saving Time is in effect, then 1ℎ must be added to 𝑇12+./-1. 

By way of example, let's determine the time of the sun's meridian transit on May 20, 2020, for a hypothetical observer 
located at 88.9471° west longitude, which is about 1° east of the time zone's standard meridian. The longitude correction, 
∆𝜆, is −4𝑚	6𝑠. The equation of time, 𝐸, on this date, is +3𝑚	24𝑠. DST is in effect, so 1h must be added to the calculated 
times. Hence, 

𝑇12+./-1 = 12ℎ − 4𝑚	6𝑠 − 3𝑚	24𝑠 + 1ℎ = 12ℎ	52𝑚	30𝑠 
 

Now, the hour angles of rising (taken as negative) and setting (taken as positive) may be added to 𝑇12+./-1 to arrive at the 
times of sunrise and set: 

𝐻2-/0 = 𝐻/01 = ±7ℎ	18𝑚	𝑠able 

 

𝑇2-/0 = 𝑇12+./-1 +𝐻2-/0  

 

𝑇2-/0 = 12ℎ	52𝑚	30𝑠 − 7ℎ	17𝑚	55𝑠 = 5ℎ	34𝑚	34𝑠	 = 	5: 34: 34	𝐴𝑀 
 

𝑇/01 = 𝑇12+./-1 +𝐻/01  

 

𝑇/01 = 12ℎ	52𝑚	30𝑠 + 7ℎ	17𝑚	55𝑠 = 8ℎ	10𝑚	54𝑠	 = 	8: 10: 54	𝑃𝑀 
 
 

7. A Word about Twilight 
 

If you are to make nomograms such as those above, it is helpful to know what the sky looks like at the beginnings and 
ends of civil, mid, nautical, and astronomical twilight. Table 4 gives some idea of what to expect in terms of sky appearances 
at these times for 40° north and southern latitudes. Twilights are most prolonged at the summer solstice and shortest at the 
winter solstice. Nearer the equator durations of twilight are shorter and nearer the poles durations of twilight are longer. 

 
End of 

evening/start of 
morning: 

𝒉⊙ Time from 
sunrise/set 

Atmospheric  
Appearance 

Stellar  
Appearance 

civil 
twilight −6° 

Ranges from 31m 
(Dec.) to 34m 
(June).  

The zenith is light pale blue while 
the direction opposite the sun’s 
location is dimmer. Area above 
sun blue with yellow lower down.   

Brighter planets and 1st magnitude 
stars are readily visible higher up 
in the sky, less so close to sun. 
Other stars not yet visible.  

mid 
twilight −9° 

Ranges from 49m 
(Dec.) to 55m 
(June). 

There is a light pale blue glow in 
the sky above the sun. The zenith 
is ashen blue. 

Only 1st and 2nd magnitude stars 
visible along with all planets other 
than Uranus and Neptune. 
Brighter star patterns higher up in 
the sky are visible. Brighter 
planets near sun are readily 
visible. 

nautical twilight −12° Ranges from 65m 
(Dec.) to 76m 

There is a faint ashen glow in the 
sky above the sun. The zenith and 

1st through 4th magnitude stars 
and all planets other than Uranus 
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(June). that part of the sky opposite the 
sun are fairly dark. 

and Neptune are visible from a 
dark rural setting. Urban settings 
are about as dark as they can be 
to get due to light pollution.  

astronomical 
twilight −18° 

Ranges from 98m 
(Dec.) to 126m 
(June). 

There is no light in the sky coming 
directly from the sun before the 
start or after the end of 
astronomical twilight. The sky is as 
dark as it can appear. 

Entirely dependent upon ambient 
conditions. In a dark rural setting, 
the limiting magnitude might be 
6.0. or higher. In an urban setting, 
only the brightest stars might be 
visible.  

 
Table 4. Atmospheric and stellar appearances in a clear sky at different points during twilight. 
 
 

8. The Effect of Parallax on the Moon’s Altitude 
 

Thus far, in our preparation of the nomogram, we have not touched upon the moon. Because the moon is not at a great 
distance from the Earth, the position of an observer (offset from the center of the Earth) can affect the apparent position of 
the moon in the sky. This apparent shift in the position of the moon due to the observer's position is called lunar parallax. 
The effect of lunar parallax is to reduce the calculated altitude of the moon. The effect is at a maximum when the moon is 
viewed on the horizon. Figure 26 shows the geometry of the situation.  
 

Figure 26. Aspects of parallax of the moon 
 

The large and small circles of Figure 26 represent the Earth and moon, respectively. Let 𝐸 represent the position of an 
observer who sees the moon at zenith whose true position on the celestial sphere is unaffected by parallax. Let 𝑂 be the 
position of an observer, not along line CEM whose position causes the lunar parallax to be at a maximum. In such a case, the 
observed zenith distance, 𝑍), equals 90°.  

Construct a line 𝑂𝐸’ parallel to 𝐶𝐸𝑀. Let 𝑍 represent the zenith of the observer at position 𝑂. The calculated zenith 
distance (unaffected by parallax) of the moon at 𝑂 is 𝑍𝑂𝐸’@  which we shall designate by 𝑍!. Seen from 𝑂, the moon appears to 
have a greater zenith distance denoted by 𝑍𝑂𝑀@  due to parallax.  

The apparent shift in the moon’s zenith distance is 𝑍) − 𝑍! that is represented by 𝐸’𝑂𝑀@ . Because 𝑂𝐶𝑀@  corresponds to 
𝑍𝑂𝐸’@ , 𝑂𝐶𝑀@  equals 𝑍!. 𝐶𝑂𝑀@  is the supplement of 𝑍𝑂𝑀@  and therefore has a value of 180° − 𝑍) because 𝐸’𝑂𝑀@  is an alternate 
interior angle to 𝑂𝑀𝐶@ , 𝑂𝑀𝐶@ = 𝑍) − 𝑍!. 

Line segment 𝐶𝑂 represents the radius of the Earth, 𝑎. Line segments 𝑂𝑀 and 𝐶𝑀 represent the distances of the 
observer from the moon in the first case and the distance of the moon from the Earth’s center in the second case. Denote 
these 𝑟’ and 𝑟, respectively. Then, applying the sine formula from plane trigonometry yields: 

 
𝑠𝑖𝑛(𝑍) − 𝑍!)

𝑎 =
𝑠𝑖𝑛 𝑍!
𝑟5  
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or 

𝑠𝑖𝑛(𝑍) − 𝑍!) =
𝑎 𝑠𝑖𝑛 𝑍!
𝑟5 ≅

𝑎 𝑠𝑖𝑛 𝑍!
𝑟  

because 𝑟 ≅ 𝑟’.  
Now 𝑎/𝑟	 = 	𝑠𝑖𝑛	Π where Π is called the horizontal parallax of the moon. Parallax is a maximum when the moon is 

observed at the horizon. With the equatorial radius of the Earth, a, equal to 6,378𝑘𝑚 and the mean radius of the moon’s 
orbit, 𝑟, equal to 384,400𝑘𝑚, we find the maximum value of parallax equal to: 

 

Π = sin(& �
6,378𝑘𝑚
384,400𝑘𝑚� = 57′ 

 
Making the substitution of 𝑎/𝑟 = 𝑠𝑖𝑛	Π in the earlier equation we have: 
 

𝑠𝑖𝑛	(𝑍) − 𝑍!) = 𝑠𝑖𝑛	Π	𝑠𝑖𝑛	𝑍! 
 
Making use of the small-angle approximation and writing 𝑍), 𝑍!, and Π in terms of degrees yields: 
 

𝑍) − 𝑍! = Π	𝑠𝑖𝑛	𝑍! 
 
where Π has a value of 0.95°. 

Now, the observed altitude of the moon, ℎ) is related to the zenith distance in the following matter: 90° − ℎ) = 𝑍). 
Similarly, the moon's calculated altitude, ℎ! , is related to 𝑍!  in the following fashion: 90° − ℎ! = 𝑍! . Making these 
substitutions and simplifying the relationship produces a valuable result. 
 

ℎ) = ℎ! − Π	𝑐𝑜𝑠	ℎ! 
 

Hence, the moon's parallax is at a maximum when the moon is on the observer’s horizon. Due to parallax, the moon’s 
apparent altitude can be diminished by as much as 0.95° from the calculated value at this time.  

It should be noted that is derivation is not rigorous and that the approximations in the derivation of this formula do not 
introduce errors larger than one-half arc minute.  
 
 

9. Effects of Refraction and Semi-diameter on Rise and Set Times 
 

From a study of physical phenomena, we know that when light exits one transparent medium and enters a different 
medium, it is most often redirected. This bending of a light ray is referred to as refraction. Refraction explains why a pencil 
partially immersed in water appears bent and accounts for a lens's ability to bring light to a focus. 

Refraction due to the Earth’s atmosphere can have an appreciable effect on the length of daylight, the times of rising and 
setting of all celestial objects, and the apparent altitudes of objects, mainly when located near the horizon where refraction is 
at a maximum. 

When a light ray enters a medium in which its average speed is lowered (the capture and re-emission of photons by 
molecules or atoms accounting for the lower overall speed), its path is bent toward the normal. That is, a ray entering a 
medium travels through that medium along a path that approximates the direction of the normal to the surface more closely. 
This phenomenon is shown in Figure 27.  
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Figure 27. A parallel layers model of the atmosphere accounting for refraction.  
 

As light enters the Earth’s atmosphere from outer space, its average speed decreases. This decrease in speed of the light 
wave causes the path of the ray to be bent toward the vertical. If the atmosphere is considered to be planar and be 
composed of many parallel layers, then it is clear that a ray reaching an observer’s eye appears to come from a higher 
elevation than the original ray. As a consequence of refraction, celestial objects appear to have a higher altitude than they do 
in reality. Refraction tends to increase the apparent altitude of celestial objects, especially near the horizon. 

Refraction has no effect on the apparent positions of objects at the zenith (except when a frontal weather system is 
moving through); it has its maximum effect on objects located near the horizon. At the horizon, refraction takes on an 
average value of about 34 minutes of arc. Variations are on the order of tens of minutes of arc due to the changing pressure 
(density) and relative humidity of the atmosphere. 

A detailed treatment of refraction is neither needed nor warranted for a work of this type. Suffice it to say that refraction 
at the horizon should be taken into account when calculating rising and setting times for celestial objects. Refraction might 
also be taken into account when calculating the positions of celestial objects in the sky. 

The effects of refraction on the rising and setting of the sun, moon, stars, and planets can be illustrated by an analysis of 
Figure 28.  
 

Figure 28. The relationship between solar and observer positions and the hour angle of the setting sun.  
 

Let 𝑆 represent the setting sun's position on a date when its declination is 𝛿	and observed from latitude 𝜙. By applying 
the cosine formula to the spherical triangle 𝑃𝑍𝑆 we have: 
 

𝑐𝑜𝑠	𝑧 = 𝑐𝑜𝑠	(90° − 𝜙)	𝑐𝑜𝑠	(90° − 𝛿) + 𝑠𝑖𝑛	(90° − 𝜙)	𝑠𝑖𝑛	(90° − 𝛿)	𝑐𝑜𝑠	𝐻 
 

𝑐𝑜𝑠	𝑧 = 𝑠𝑖𝑛	𝜙	𝑠𝑖𝑛	𝛿 + 𝑐𝑜𝑠	𝜙	𝑐𝑜𝑠	𝛿	𝑐𝑜𝑠	𝐻 
from which we arrive at: 

𝐻 = 𝑐𝑜𝑠(& �
𝑐𝑜𝑠 𝑧 − 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝛿

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝛿 � 
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If sunrise or sunset is defined as the time when the sun’s upper limb is on the horizon, then the sun's zenith distance is 

90° plus 16’ of arc, the sun’s average apparent semidiameter being equal to 16’ of arc. This ignores the effect of refraction 
that serves to reduce the apparent zenith distance of celestial objects. If refraction is taken into account, then the sun’s true 
zenith distance at the times of rising and setting is 90° plus 16’ of arc for semidiameter plus about 35’ of arc for refraction for 
a total of approximately 90°	51’. 

Concerning sunset, refraction retards the disappearance of the sun. At mid northerly latitudes on an equinox date, the 
time of sunset is delayed by just over 3 minutes due to the sun’s semidiameter and atmospheric refraction. In polar regions, 
the delay can add up to hours. The time of sunrise comes earlier by a similar time interval. 
Refraction, therefore, increases the length of the daylight hours by just over 6 minutes on the date of the equinoxes. Recent 
studies, however, have shown that the differences between the calculated and actual times of sunrise and sunset can vary by 
as much as three minutes due to the ever-changing refraction of the Earth’s atmosphere caused by changes in pressure and 
relative humidity. Elevation of the observer above sea level and the horizon also can play a role. 

Events involving the moon also must include apparent semidiameter and refraction. Because the moon’s apparent 
semidiameter oscillates only slightly around the sun’s mean value and the atmospheric refraction is the same, the sun and 
moon can be treated similarly for cases involving the need for only a good approximation.  
 
 

10. Fundamentals of Celestial Navigation 
 

Spherical astronomy can, along with a sextant, chronometer, and a nautical almanac, be used to determine one’s 
position on the surface of Earth. An expert navigator can sometimes use a good sextant and proper technique to determine 
the position of a ship a sea to within 1/10 nautical mile of the true position. Unfortunately, few mariners today are familiar 
with celestial navigation, though Naval and Coast Guide cadets are trained in its use should newer electronic means fail for 
any reason.   

This section has been provided to explain the basic processes associated with celestial navigation. It is not the intention 
of the author to create a navigator. If that is your goal, then the reader is advised look into any of a number of widely 
available guides to celestial navigation. 
 
10a. Basic Concept 
 

The basic concept behind celestial navigation is rather simple and can be readily explained with the use of two 
streetlamp analogies. If, for instance, a person (considered very, very short of the sake of this example – perhaps as tall as an 
ant) were to know the elevation of a streetlamp, then he or she could readily determine his or her position with respect to 
the base of the light as shown in Figure 29.  

 
Figure 29. A streetlamp with a position circle based on a 56° elevation. 

 
The very, very short person uses a sextant to determine that the light source (representing the sun, moon, planet, or 

star) is 56° above the horizon. With this information, the observer can determine his or her location with respect to the base 
of the streetlamp – but only to a limited extent. The observer is located on a position circle of fixed radius centered on the 
base of the lamp (sub-solar, sub-lunar, sub-planetary, sub-stellar point as the observed object may be). Anyone located 
anywhere on this position circle would see the lamp 56° above the horizon. To find the point on this circle where the 
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observer is located will require the use of a second observation from the same location but involving a different streetlamp. 
This situation is illustrated in Figure 30. 

 
Figure 30. How two position circles reduce considerably the uncertainly in observer location.  
 

In this second example, a new position circle is located such that the light source is 39° above the horizon. Now, this 
second observation restricts the observer’s placement to two possible locations, either point A or point B, where the two 
acquisition circles intersect. Only in these two locations can the angles of elevation be 56° and 39°. A third observation using 
another streetlamp would uniquely determine the position of the observer, but this is rarely needed if the observer has a fair 
understanding of where her or she is located. (Points A and B are often hundreds of miles apart and most navigators in 
general know approximately where they are by the processes of dead reckoning.) 

 
10b. Basic Procedure 

 
How does one convert the measured elevation of celestial objects into a position on the surface of the ocean? Assume 

an observer position based upon course, speed, time, ocean currents from the last known position – a port say. Then, use this 
assumed position to calculate the expected elevation of a celestial object, ℎ!, using a variation of a relationship found 
previously: 

𝑠𝑖𝑛	ℎ! = 𝑠𝑖𝑛	𝜙	𝑠𝑖𝑛	𝛿 + 𝑐𝑜𝑠	𝜙	𝑐𝑜𝑠	𝛿	𝑐𝑜𝑠	𝐿𝐻𝐴 
 

In this case 𝐿𝐻𝐴 (the local hour angle of the star) and latitude (𝜙) will be known only approximately and these will 
introduce an error into the calculated position. 𝐿𝐻𝐴 is not known with precision because 𝐿𝐻𝐴	 = 	𝐺𝐻𝐴	– 	𝜆(𝑊). While 𝐺𝐻𝐴 
is known with precision from a knowledge of the time at Greenwich (hence the chronometer and the nautical almanac) but 
𝜆(𝑊) is known only approximately.  

Now, the assumed latitude of the observer and, declination and local hour angle of the star can be used with the above 
equation to determine the calculated elevation of the star. Comparing the calculated elevation (ℎ!) with the observed 
elevation (ℎ)) will tell the observer if he is closer to or farther from the substellar point than expected. As shown in Figure 31, 
if ℎ) >	ℎ!, then the observer is closer to the substellar point than the assumed position indicates and vice versa. Each arc 
minute of difference is equal to a distance of one nautical mile.  

 
Figure 31. When ℎ) >	ℎ!, the observer is closer to the substellar point than assumed. 
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We now need to know the azimuth of the star relative to the assumed position of the observer so we can mark off the 
appropriate distance in the correct direction from the assumed position. That is done with the aid of the following formula: 

 

𝑐𝑜𝑠 𝐴) =
𝑠𝑖𝑛 𝛿 − 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 ℎ)

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 ℎ)
 

 
Once 𝐴𝑧 is known from 𝐴) (recall that 𝐴𝑧 = 360° − 𝐴) if 𝑠𝑖𝑛	𝐿𝐻𝐴 < 0), then a position line (segment of a circle of 

position – treated as a straight line because it is only a tiny segment of a very large circle) can be drawn on an appropriate 
nautical chart. The position line will be perpendicular to the line of azimuth crossing at a location ℎ) −	ℎ! closer (in this case) 
to the substellar point as shown in Figure 32. 

 

 
Figure 32. The azimuth line is drawn from the assumed position toward azimuth of the substellar point. If ℎ) >	ℎ!, then the 
position line is drawn closer to the substellar point a distance in nautical miles equal ℎ) −	ℎ! (expressed in arc minutes). The 
converse is also true. The true position of the observer is somewhere along this position line. 
 

A fix is then taken on a second star and the value of ℎ) −	ℎ!	computed. A second line of azimuth is then drawn on a 
nautical chart from the assumed position to the second substellar point and a second position line drawn. The observer must 
also be located somewhere on this second position line. Where the position lines cross shows the true location of the 
observer as shown in Figure 33. 

 
 
Figure 33. Where the two position lines cross indicates the true position of the observer. 
 
10c. Corrections to Sextant Observations 

 
Sextants are used to measure the apparent elevation of a celestial object above the horizon. Failure to take necessary 

correction to apparent elevation can lead to large errors in position. A detailed study of the sextant is needed to fully 
understand how the process works as well as the corrections, but the corrections are summarized here as follows: 

 
• Index Error – A sextant consists of two mirrors that should indicate an elevation of zero degrees when sighting an object 

on the horizon. The mirrors can be aligned so that the measured elevation is indeed zero, but mirror alignment can 
sometimes be a tricky process and the mirrors can be jiggled when the sextant is stored and removed for use. Rather 
than try to correct the mirrors with each use of the sextant, the deviation from zero degrees when viewing something on 
the horizon. This error typically can amount as much as about 5 arc minutes and therefore cannot be ignored. 

• Semidiameter – If the upper or lower limbs of the solar or lunar disks are used for location determination, then the 
semidiameter must either be subtracted (in the event of using the upper edge) or added (in the case of using the lower 
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edge) to correct the observation. Solar and lunar declinations are listed in the nautical almanac for these bodies’ centers. 
Semidiameters are tabulated in the Nautical Almanac for every day of the year.  

• Lunar Parallax – Of all the celestial bodies, only the moon is sufficiently close to the Earth to demonstrate considerable 
parallax. A correction for lunar parallax must also be made because parallax will serve to change the apparent position of 
the moon in the sky.  

• Dip of the Horizon – The observer’s height above sea level causes the horizon to have a zenith distance of more than 90°. 
This excess is called the dip of the horizon. Geometrically speaking, this dip (and the distance to the horizon) can be 
easily shown to have a standard mathematical form. Unfortunately, atmospheric refraction due to the layer between the 
ocean surface and the height of the sextant horizontal optical axis above the ocean surface complicates the matter 
considerably. Typically, the dip of the horizon is quite different when the temperature of the air decreases with 
increasing distance or suffers a temperature inversion (temperature of the air increases with increasing distance above 
the ocean). A general rule for dip of the horizon is given that will have to suffice for the here now. 𝜃 = 1.92√ℎ, where 
𝜃	is expressed in arc minutes and ℎ is the distance above the ocean surface expressed in meters. For instance, if a sailor’s 
eye is 8𝑚 above the surface of the ocean, then 𝜃 = 1.92√8 = 5.43′ approximately. Failure to correct for this amount of 
dip in the horizon can affect the ships determined position to be in error by more than 5 nautical miles. (1 arc minute 
corresponds to 1 nautical mile = 6080𝑓𝑡 at the equator. 

• Atmospheric Refraction – Atmospheric refraction causes objects to appear higher in the sky than they actually are. 
That’s why sunrises occur earlier and sunsets later than would be expected if there were no atmosphere. As noted in the 
section on refraction, refraction can amount to as much as 35’ at the horizon but diminishes to 0’ at the zenith. A 
functional formula for refraction (there are many variations) is as follows: 𝑅 = 𝑐𝑜𝑡(ℎ + 7.31 (ℎ + 4.4⁄ ))	where ℎ is the 
true elevation in degrees, and 𝑅 is expressed in arc minutes). This formula gives no consideration to the components of 
pressure, relative humidly, and temperature. It will suffice, however, for the purpose of this illustration.  
 

10d. Position at Sea – USCG Eagle 
 

United States Coast Guard cutter Eagle (an 1877 tall ship) is used for training in basic seamanship. One of the skills taught 
to cadettes is celestial navigation using a sextant and chronometer (an accurate clock). The cutter is approaching its home 
port in New London, Connecticut. The date is June 20, 2020. The stars Vega and Arcturus are “shot” during evening twilight 
(before the end of nautical twilight when the horizon is too dark to see) to determine the ship’s position. The assumed 
position based on dead reckoning is as follows: 

𝜙 = 42.0°	𝑁 
 

𝜆(𝑊) = 72.5° 
 
The following data are collected in relation to each star whose positions have been precessed to the date J2020.5: 
 

 Star: 𝑽𝒆𝒈𝒂 
Time of shot: 9: 25	𝑃𝑀 
𝐺𝐻𝐴: 00ℎ	46.2’𝑊 
𝛼 = 18ℎ	37.6𝑚 (J2020.5) 
𝐿𝐻𝐴 = 𝐺𝐻𝐴 − 𝜆(𝑊) = 04ℎ	02.2’𝐸 
𝛿 = +38°	48.1′ (J2020.5) 

Star: 𝑨𝒓𝒄𝒕𝒖𝒓𝒖𝒔 
Time of shot: 9: 30	𝑃𝑀 
𝐺𝐻𝐴: 05ℎ	07.2’𝑊 
𝛼 = 14ℎ	16.6𝑚 (J2020.5) 
𝐿𝐻𝐴 = 𝐺𝐻𝐴 − 𝜆(𝑊) = 00ℎ	23.8’𝑊 
𝛿 = +19°	05.5′ (J2020.5) 

 

 
Figure 31 is used to derive the following relationships: 
 

𝑠𝑖𝑛	ℎ! = 𝑠𝑖𝑛	𝜙	𝑠𝑖𝑛	𝛿 + 𝑐𝑜𝑠	𝜙	𝑐𝑜𝑠	𝛿	𝑐𝑜𝑠	𝐿𝐻𝐴 
 

𝑐𝑜𝑠 𝐴) =
𝑠𝑖𝑛 𝛿 − 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛 ℎ

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 ℎ  
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Figure 31. The spherical triangle used to calculate elevation and azimuth of celestial object based on assumed position. 
 

The following data are then generated for ℎ! and 𝐴𝑧 using the assumed position. Included are the corrected sextant 
observations yielding ℎ). Also given is the difference ℎ) −	ℎ! 
 
 Star: 𝑽𝒆𝒈𝒂 

 
ℎ) = 44°	50.5′ 
ℎ! = 44°	28.2′ 

 
ℎ) −	ℎ! = +22.3’ (toward star) 

 
𝐴𝑧 = 73°	08.8𝑚 

Star: 𝑨𝒓𝒄𝒕𝒖𝒓𝒖𝒔 
 

ℎ) = 66°	14.8′ 
ℎ! = 66°	36.5′ 

 
ℎ) −	ℎ! = −21.7’ (opposite star) 

 
𝐴𝑧 = 194°	05.8’ 

 

 
Figure 32 shows the assumed position and the stellar azimuths and position lines at the appropriate distances and 

directions from the substellar points. The location where the position lines cross is the actual position of the ship. The 
latitude and longitude of the actual position are taken from the gridlines on the nautical chart. The distance between the two 
locations is 22.5’ or 22.5 nautical miles.  

 
Figure 32. Map solution for the actual position of the Eagle.  

 
 

11. Areas on the Celestial Sphere 
 

The area on the surface of a sphere is frequently given as a solid angle. The unit of solid angular measure called the 
steradian. The surface area of a sphere is 4𝜋 steradians, where the steradian is defined as follows:  
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1	𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛 = §
180°
𝜋 ¨

%

 

 
Because each steradian intercepts approximately 3,283 square degrees, the sky that has 4𝜋 steradians contains 

approximately 41,253 square degrees.  
What would be the area, 𝐴, of a spherical polygon on the surface of a sphere? From the study of spherical trigonometry 

we know that the area of such a polygon in steradians is given by the following formula: 
 

𝐴 =
𝜋𝑟%𝐸
180°  

 
where 𝑟 is the radius of the sphere (set equal to unity) and 𝐸 is the spherical excess defined by the following relationship: 
 

𝐸 = 𝑇 − 180°(𝑛 − 2) 
 
In this relationship, 𝑇	equals the total of all angles in the polygon, and 𝑛 equals the number of sides. 
For a spherical triangle (𝑛 = 3) on the surface of the unit sphere (𝑟 = 1) the area inscribed in steradians is found to be: 
 

𝐴 =
𝜋

180° (𝐴 + 𝐵 + 𝐶 − 180°) 
 
where 𝐴, 𝐵, and 𝐶 are the angles of the spherical triangle expressed in degrees. 

For a polar triangle in which all sides and angles equal 90°, the area is found to be 𝜋/2 steradians. This equals one-eighth 
of the total 4𝜋 steradian sphere that is the expected result. 

If we choose to rewrite 𝐴 in terms of square degrees, the above equation becomes: 
 

𝐴 =
180°
𝜋 (𝐴 + 𝐵 + 𝐶 − 180°) 

 
If the above formula is now applied to determine the number of square degrees present in, say, the Summer Triangle, 

that region of the sky bordered by great circle arcs extending from Vega to Altair to Deneb and back again to Vega, we must 
first calculate the angular separations between each pair of stars by applying the cosine formula: 
 

𝑐𝑜𝑠	𝑑 = 𝑠𝑖𝑛	𝛿&	𝑠𝑖𝑛	𝛿% + 𝑐𝑜𝑠	𝛿&	𝑐𝑜𝑠	𝛿%	𝑐𝑜𝑠	(∆𝛼) 
 
Results of these calculations are to be found below: 
 

Altair-Vega (𝐴𝑉F ) Altair-Deneb (𝐴𝐷F ) Deneb-Vega (𝐷𝑉F ) 
34.195°	 38.014°	 23.847°	

 
Once the angular separations between the stars are found, the vertices of the Summer Triangle, 𝐴, 𝐵, and 𝐶, can be 

found by reapplying the cosine formula: 
 

𝑐𝑜𝑠 𝐴 =
𝑐𝑜𝑠 𝐴𝐷F − 𝑐𝑜𝑠 𝐴𝑉F 𝑐𝑜𝑠 𝐷𝑉F

𝑠𝑖𝑛 𝐴𝑉F sin𝐷𝑉F
 

 
where 𝐴 equals the vertex of an angle as seen from Altair and 𝐴𝐷F , 𝐴𝑉F , and 𝐷𝑉F  are the angular separations between the 
three stars found previously. Formulas for the remaining vertices are similar. The three resulting vertices are given below: 
 

Vega-Deneb-Altair Deneb-Altair-Vega Altair-Vega-Deneb 
64.669° 40.557° 82.071° 

 
Inserting these values into the equation for the area of a spherical triangle in degrees given above values yields an area for 
the Summer Triangle equal to some 418.09 square degrees. 
 


